BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29078370)

  • 1. Algorithm for cellular reprogramming.
    Ronquist S; Patterson G; Muir LA; Lindsly S; Chen H; Brown M; Wicha MS; Bloch A; Brockett R; Rajapakse I
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11832-11837. PubMed ID: 29078370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell fate reprogramming through engineering of native transcription factors.
    Jauch R
    Curr Opin Genet Dev; 2018 Oct; 52():109-116. PubMed ID: 29980007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-Analysis of Transcriptome Regulation During Induction to Cardiac Myocyte Fate From Mouse and Human Fibroblasts.
    Rastegar-Pouyani S; Khazaei N; Wee P; Yaqubi M; Mohammadnia A
    J Cell Physiol; 2017 Aug; 232(8):2053-2062. PubMed ID: 27579918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Reprogramming of Cellular States by Combinatorial Perturbation.
    Duan J; Li B; Bhakta M; Xie S; Zhou P; Munshi NV; Hon GC
    Cell Rep; 2019 Jun; 27(12):3486-3499.e6. PubMed ID: 31216470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.
    Treutlein B; Lee QY; Camp JG; Mall M; Koh W; Shariati SA; Sim S; Neff NF; Skotheim JM; Wernig M; Quake SR
    Nature; 2016 Jun; 534(7607):391-5. PubMed ID: 27281220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Computational Method for Identifying Yeast Cell Cycle Transcription Factors.
    Wu WS
    Methods Mol Biol; 2016; 1342():209-19. PubMed ID: 26254926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.
    Ebrahimi B
    Differentiation; 2016; 92(1-2):35-40. PubMed ID: 27056282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.
    Del Vecchio D; Abdallah H; Qian Y; Collins JJ
    Cell Syst; 2017 Jan; 4(1):109-120.e11. PubMed ID: 28065574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting involvement of polycomb repressive complex 2 in direct conversion of mouse fibroblasts into induced neural stem cells.
    Yaqubi M; Mohammadnia A; Fallahi H
    Stem Cell Res Ther; 2015 Mar; 6(1):42. PubMed ID: 25890371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity.
    D'Alessio AC; Fan ZP; Wert KJ; Baranov P; Cohen MA; Saini JS; Cohick E; Charniga C; Dadon D; Hannett NM; Young MJ; Temple S; Jaenisch R; Lee TI; Young RA
    Stem Cell Reports; 2015 Nov; 5(5):763-775. PubMed ID: 26603904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive transcriptome mining of the direct conversion of mesodermal cells.
    Akbari B; Wee P; Yaqubi M; Mohammadnia A
    Sci Rep; 2017 Sep; 7(1):10427. PubMed ID: 28874788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation.
    Miyamoto T; Furusawa C; Kaneko K
    PLoS Comput Biol; 2015 Aug; 11(8):e1004476. PubMed ID: 26308610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative model of cellular decision making in direct neuronal reprogramming.
    Merlevede A; Legault EM; Drugge V; Barker RA; Drouin-Ouellet J; Olariu V
    Sci Rep; 2021 Jan; 11(1):1514. PubMed ID: 33452356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.
    Berthoin L; Toussaint B; Garban F; Le Gouellec A; Caulier B; Polack B; Laurin D
    Int J Pharm; 2016 Nov; 513(1-2):678-687. PubMed ID: 27697633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic distribution decomposition for single-cell snapshot time series identifies subpopulations and trajectories during iPSC reprogramming.
    Taylor-King JP; Riseth AN; Macnair W; Claassen M
    PLoS Comput Biol; 2020 Jan; 16(1):e1007491. PubMed ID: 31923173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem Cell Surface Marker Expression Defines Late Stages of Reprogramming to Pluripotency in Human Fibroblasts.
    Pomeroy JE; Hough SR; Davidson KC; Quaas AM; Rees JA; Pera MF
    Stem Cells Transl Med; 2016 Jul; 5(7):870-82. PubMed ID: 27160704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical roles of Cyclin D1 in mouse embryonic fibroblast cell reprogramming.
    Oh HR; Kim J; Kim J
    FEBS J; 2016 Dec; 283(24):4549-4568. PubMed ID: 27790870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.