BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29078370)

  • 41. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor.
    Guo R; Tang W; Yuan Q; Hui L; Wang X; Xie X
    Stem Cell Reports; 2017 Aug; 9(2):499-512. PubMed ID: 28757167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
    Chronis C; Fiziev P; Papp B; Butz S; Bonora G; Sabri S; Ernst J; Plath K
    Cell; 2017 Jan; 168(3):442-459.e20. PubMed ID: 28111071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.
    Chen F; Zhang G; Yu L; Feng Y; Li X; Zhang Z; Wang Y; Sun D; Pradhan S
    Stem Cell Res Ther; 2016 Jul; 7(1):99. PubMed ID: 27473118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Divergent reprogramming routes lead to alternative stem-cell states.
    Tonge PD; Corso AJ; Monetti C; Hussein SM; Puri MC; Michael IP; Li M; Lee DS; Mar JC; Cloonan N; Wood DL; Gauthier ME; Korn O; Clancy JL; Preiss T; Grimmond SM; Shin JY; Seo JS; Wells CA; Rogers IM; Nagy A
    Nature; 2014 Dec; 516(7530):192-7. PubMed ID: 25503232
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of TF target sites based on atomistic models of protein-DNA complexes.
    Angarica VE; Pérez AG; Vasconcelos AT; Collado-Vides J; Contreras-Moreira B
    BMC Bioinformatics; 2008 Oct; 9():436. PubMed ID: 18922190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors.
    Hou PS; Chuang CY; Yeh CH; Chiang W; Liu HJ; Lin TN; Kuo HC
    Stem Cell Reports; 2017 Jan; 8(1):54-68. PubMed ID: 27940274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Master regulators in primary skin fibroblast fate reprogramming in a human ex vivo model of chronic wounds.
    Noizet M; Lagoutte E; Gratigny M; Bouschbacher M; Lazareth I; Roest Crollius H; Darzacq X; Dugast-Darzacq C
    Wound Repair Regen; 2016 Mar; 24(2):247-62. PubMed ID: 26663515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational characterization of chromatin domain boundary-associated genomic elements.
    Hong S; Kim D
    Nucleic Acids Res; 2017 Oct; 45(18):10403-10414. PubMed ID: 28977568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissecting the variation in transcriptional circuits between naive and primed pluripotent states.
    Deb A; Sarkar A; Ghosh Z
    FEBS Lett; 2017 Aug; 591(15):2362-2375. PubMed ID: 28649717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell fate reprogramming by control of intracellular network dynamics.
    Zañudo JG; Albert R
    PLoS Comput Biol; 2015 Apr; 11(4):e1004193. PubMed ID: 25849586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review).
    Guerrero-Ramirez GI; Valdez-Cordoba CM; Islas-Cisneros JF; Trevino V
    Mol Med Rep; 2018 Aug; 18(2):1225-1237. PubMed ID: 29845286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Weighted enrichment method for prediction of transcription regulators from transcriptome and global chromatin immunoprecipitation data.
    Kawakami E; Nakaoka S; Ohta T; Kitano H
    Nucleic Acids Res; 2016 Jun; 44(11):5010-21. PubMed ID: 27131787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network.
    Golipour A; David L; Liu Y; Jayakumaran G; Hirsch CL; Trcka D; Wrana JL
    Cell Stem Cell; 2012 Dec; 11(6):769-82. PubMed ID: 23217423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells.
    Bar-Joseph Z; Siegfried Z; Brandeis M; Brors B; Lu Y; Eils R; Dynlacht BD; Simon I
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):955-60. PubMed ID: 18195366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo.
    Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS
    Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors.
    Kochat V; Equbal Z; Baligar P; Kumar V; Srivastava M; Mukhopadhyay A
    PLoS One; 2017; 12(3):e0173977. PubMed ID: 28328977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Critical POU domain residues confer Oct4 uniqueness in somatic cell reprogramming.
    Jin W; Wang L; Zhu F; Tan W; Lin W; Chen D; Sun Q; Xia Z
    Sci Rep; 2016 Feb; 6():20818. PubMed ID: 26877091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ranking reprogramming factors for cell differentiation.
    Hammelman J; Patel T; Closser M; Wichterle H; Gifford D
    Nat Methods; 2022 Jul; 19(7):812-822. PubMed ID: 35710610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.