These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29078386)

  • 1. Strong attractions and repulsions mediated by monovalent salts.
    Li Y; Girard M; Shen M; Millan JA; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11838-11843. PubMed ID: 29078386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolyte-Mediated Assembly of Charged Nanoparticles.
    Kewalramani S; Guerrero-García GI; Moreau LM; Zwanikken JW; Mirkin CA; Olvera de la Cruz M; Bedzyk MJ
    ACS Cent Sci; 2016 Apr; 2(4):219-24. PubMed ID: 27163052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monovalent ion-mediated charge-charge interactions drive aggregation of surface-functionalized gold nanoparticles.
    Petretto E; Ong QK; Olgiati F; Mao T; Campomanes P; Stellacci F; Vanni S
    Nanoscale; 2022 Oct; 14(40):15181-15192. PubMed ID: 36214308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of monovalent ion size on colloidal forces probed by Monte Carlo simulations.
    Ibarra-Armenta JG; Martín-Molina A; Quesada-Pérez M
    Phys Chem Chem Phys; 2011 Aug; 13(29):13349-57. PubMed ID: 21706120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charged Nanoparticle Attraction in Multivalent Salt Solution: A Classical-Fluids Density Functional Theory and Molecular Dynamics Study.
    Salerno KM; Frischknecht AL; Stevens MJ
    J Phys Chem B; 2016 Jul; 120(26):5927-37. PubMed ID: 27057763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
    Hu JD; Zevi Y; Kou XM; Xiao J; Wang XJ; Jin Y
    Sci Total Environ; 2010 Jul; 408(16):3477-89. PubMed ID: 20421125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water.
    Peng YH; Tso CP; Tsai YC; Zhuang CM; Shih YH
    Sci Total Environ; 2015 Oct; 530-531():183-190. PubMed ID: 26042532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces between silica particles in the presence of multivalent cations.
    Valmacco V; Elzbieciak-Wodka M; Herman D; Trefalt G; Maroni P; Borkovec M
    J Colloid Interface Sci; 2016 Jun; 472():108-15. PubMed ID: 27016916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte.
    Guerrero-García GI; González-Mozuelos P; Olvera de la Cruz M
    J Chem Phys; 2011 Oct; 135(16):164705. PubMed ID: 22047261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale approach for modeling stability, aggregation, and network formation of nanoparticles suspended in aqueous solutions.
    Cardellini A; Alberghini M; Govind Rajan A; Misra RP; Blankschtein D; Asinari P
    Nanoscale; 2019 Feb; 11(9):3979-3992. PubMed ID: 30768101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large counterions boost the solubility and renormalized charge of suspended nanoparticles.
    Guerrero-García GI; González-Mozuelos P; Olvera de la Cruz M
    ACS Nano; 2013 Nov; 7(11):9714-23. PubMed ID: 24180597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments.
    Chen C; Huang W
    Environ Sci Technol; 2017 Feb; 51(4):2077-2086. PubMed ID: 28090765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions.
    Li YV; Cathles LM
    J Colloid Interface Sci; 2014 Dec; 436():1-8. PubMed ID: 25259754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion correlation forces between uncharged dielectric walls.
    Wernersson E; Kjellander R
    J Chem Phys; 2008 Oct; 129(14):144701. PubMed ID: 19045159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective charges and virial pressure of concentrated macroion solutions.
    Boon N; Guerrero-García GI; van Roij R; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9242-6. PubMed ID: 26170315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting aggregation rates of colloidal particles from direct force measurements.
    Ruiz-Cabello FJ; Trefalt G; Csendes Z; Sinha P; Oncsik T; Szilagyi I; Maroni P; Borkovec M
    J Phys Chem B; 2013 Oct; 117(39):11853-62. PubMed ID: 24015897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attraction between like-charged monovalent ions.
    Zangi R
    J Chem Phys; 2012 May; 136(18):184501. PubMed ID: 22583294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative aggregation of gold nanoparticles on phospholipid vesicles is electrostatically driven.
    Mateos H; Mallardi A; Oliver M; Dell'Aglio M; Giannone P; Palazzo G
    Phys Chem Chem Phys; 2024 Sep; 26(35):23103-23115. PubMed ID: 39177151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.