These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29079494)
1. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na Maćczak A; Duchnowicz P; Sicińska P; Koter-Michalak M; Bukowska B; Michałowicz J Food Chem Toxicol; 2017 Dec; 110():351-359. PubMed ID: 29079494 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes. Maćczak A; Bukowska B; Michałowicz J Comp Biochem Physiol C Toxicol Pharmacol; 2015; 176-177():62-70. PubMed ID: 26232583 [TBL] [Abstract][Full Text] [Related]
3. Eryptosis-inducing activity of bisphenol A and its analogs in human red blood cells (in vitro study). Maćczak A; Cyrkler M; Bukowska B; Michałowicz J J Hazard Mater; 2016 Apr; 307():328-35. PubMed ID: 26799224 [TBL] [Abstract][Full Text] [Related]
4. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study). Michałowicz J; Mokra K; Bąk A Toxicol In Vitro; 2015 Oct; 29(7):1464-72. PubMed ID: 26028149 [TBL] [Abstract][Full Text] [Related]
5. Alterations in rat erythrocyte membrane due to hexachlorocyclohexane (technical) exposure. Bhalla P; Agrawal D Hum Exp Toxicol; 1998 Nov; 17(11):638-42. PubMed ID: 9865422 [TBL] [Abstract][Full Text] [Related]
6. The impact of toxic bisphenols on model human erythrocyte membranes. Wyżga B; Połeć K; Olechowska K; Hąc-Wydro K Colloids Surf B Biointerfaces; 2020 Feb; 186():110670. PubMed ID: 31812800 [TBL] [Abstract][Full Text] [Related]
7. Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Maćczak A; Cyrkler M; Bukowska B; Michałowicz J Toxicol In Vitro; 2017 Jun; 41():143-149. PubMed ID: 28259788 [TBL] [Abstract][Full Text] [Related]
8. Physiologically Based Pharmacokinetic (PBPK) Modeling of the Bisphenols BPA, BPS, BPF, and BPAF with New Experimental Metabolic Parameters: Comparing the Pharmacokinetic Behavior of BPA with Its Substitutes. Karrer C; Roiss T; von Goetz N; Gramec Skledar D; Peterlin Mašič L; Hungerbühler K Environ Health Perspect; 2018 Jul; 126(7):077002. PubMed ID: 29995627 [TBL] [Abstract][Full Text] [Related]
9. Bisphenol A and its analogs exhibit different apoptotic potential in peripheral blood mononuclear cells (in vitro study). Mokra K; Kocia M; Michałowicz J Food Chem Toxicol; 2015 Oct; 84():79-88. PubMed ID: 26271707 [TBL] [Abstract][Full Text] [Related]
10. Bisphenol A and Bisphenol S Oxidative Effects in Sheep Red Blood Cells: An Baralla E; Demontis MP; Varoni MV; Pasciu V Biomed Res Int; 2021; 2021():6621264. PubMed ID: 33834069 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of DNA-damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Mokra K; Kuźmińska-Surowaniec A; Woźniak K; Michałowicz J Food Chem Toxicol; 2017 Feb; 100():62-69. PubMed ID: 27923681 [TBL] [Abstract][Full Text] [Related]
12. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. Feng Y; Jiao Z; Shi J; Li M; Guo Q; Shao B Chemosphere; 2016 Mar; 147():9-19. PubMed ID: 26751127 [TBL] [Abstract][Full Text] [Related]
13. In vitro impact of bisphenols BPA, BPF, BPAF and 17β-estradiol (E2) on human monocyte-derived dendritic cell generation, maturation and function. Švajger U; Dolenc MS; Jeras M Int Immunopharmacol; 2016 May; 34():146-154. PubMed ID: 26945833 [TBL] [Abstract][Full Text] [Related]
14. Effects of ouabain on membrane fluidity of erythrocytes in essential hypertension. An electron spin resonance study. Tsuda K; Shima H; Kimura K; Nishio I; Masuyama Y Am J Hypertens; 1991 Sep; 4(9):783-5. PubMed ID: 1657045 [TBL] [Abstract][Full Text] [Related]
15. Membrane changes in rat erythrocyte ghosts on ghee feeding. Niranjan TG; Krishnakantha TP Mol Cell Biochem; 2000 Jan; 204(1-2):57-63. PubMed ID: 10718625 [TBL] [Abstract][Full Text] [Related]
16. Abnormal membrane fluidity and acetylcholinesterase activity in erythrocytes from insulin-dependent diabetic patients. Testa I; Rabini RA; Fumelli P; Bertoli E; Mazzanti L J Clin Endocrinol Metab; 1988 Dec; 67(6):1129-33. PubMed ID: 2848052 [TBL] [Abstract][Full Text] [Related]
17. Study on the interaction of Se and erythrocyte membrane--effect of Se on the Na, K-ATPase activity and fluidity of erythrocyte membranes. Yang FY; Wo WH Sci Sin B; 1986 Oct; 29(10):1077-83. PubMed ID: 3033820 [TBL] [Abstract][Full Text] [Related]
18. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Castro B; Sánchez P; Torres JM; Ortega E Environ Res; 2015 Oct; 142():281-7. PubMed ID: 26186136 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide gene expression profiling of low-dose, long-term exposure of human osteosarcoma cells to bisphenol A and its analogs bisphenols AF and S. Fic A; Mlakar SJ; Juvan P; Mlakar V; Marc J; Dolenc MS; Broberg K; Mašič LP Toxicol In Vitro; 2015 Aug; 29(5):1060-9. PubMed ID: 25912373 [TBL] [Abstract][Full Text] [Related]
20. Modulation of (Na,K)-ATPase activity by membrane fatty acid composition: therapeutic implications in human hypertension. Rodrigo R; Miranda-Merchak A; Valenzuela Grau R; Bachler JP; Vergara L Clin Exp Hypertens; 2014; 36(1):17-26. PubMed ID: 23659494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]