These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29079618)
1. Harnessing the Periplasm of Bacterial Cells To Develop Biocatalysts for the Biosynthesis of Highly Pure Chemicals. Yang Y; Wu Y; Hu Y; Wang H; Guo L; Fredrickson JK; Cao B Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079618 [TBL] [Abstract][Full Text] [Related]
3. Cofactor trapping, a new method to produce flavin mononucleotide. Krauss U; Svensson V; Wirtz A; Knieps-Grünhagen E; Jaeger KE Appl Environ Microbiol; 2011 Feb; 77(3):1097-100. PubMed ID: 21131527 [TBL] [Abstract][Full Text] [Related]
4. Modular Engineering of the Flavin Pathway in Escherichia coli for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production. Liu S; Diao N; Wang Z; Lu W; Tang YJ; Chen T J Agric Food Chem; 2019 Jun; 67(23):6532-6540. PubMed ID: 31099250 [TBL] [Abstract][Full Text] [Related]
5. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein. Deka RK; Brautigam CA; Liu WZ; Tomchick DR; Norgard MV mBio; 2015 May; 6(3):e00519-15. PubMed ID: 25944861 [TBL] [Abstract][Full Text] [Related]
6. Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm. Deka RK; Brautigam CA; Liu WZ; Tomchick DR; Norgard MV Microbiologyopen; 2016 Feb; 5(1):21-38. PubMed ID: 26626129 [TBL] [Abstract][Full Text] [Related]
7. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987 [TBL] [Abstract][Full Text] [Related]
8. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides. Iamurri SM; Daugherty AB; Edmondson DE; Lutz S Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887 [TBL] [Abstract][Full Text] [Related]
9. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch. Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556 [TBL] [Abstract][Full Text] [Related]
10. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Wang H; Mann PA; Xiao L; Gill C; Galgoci AM; Howe JA; Villafania A; Barbieri CM; Malinverni JC; Sher X; Mayhood T; McCurry MD; Murgolo N; Flattery A; Mack M; Roemer T Cell Chem Biol; 2017 May; 24(5):576-588.e6. PubMed ID: 28434876 [TBL] [Abstract][Full Text] [Related]
11. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Pedrolli DB; Mack M Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Fedorovych DV; Dmytruk KV; Sibirny AA Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426 [TBL] [Abstract][Full Text] [Related]
13. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285 [TBL] [Abstract][Full Text] [Related]
14. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Covington ED; Gelbmann CB; Kotloski NJ; Gralnick JA Mol Microbiol; 2010 Oct; 78(2):519-32. PubMed ID: 20807196 [TBL] [Abstract][Full Text] [Related]
15. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646 [TBL] [Abstract][Full Text] [Related]
16. Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Yatsyshyn VY; Ishchuk OP; Voronovsky AY; Fedorovych DV; Sibirny AA Metab Eng; 2009 May; 11(3):163-7. PubMed ID: 19558965 [TBL] [Abstract][Full Text] [Related]
17. Investigations of blue light-induced reactive oxygen species from flavin mononucleotide on inactivation of E. coli. Liang JY; Cheng CW; Yu CH; Chen LY J Photochem Photobiol B; 2015 Feb; 143():82-8. PubMed ID: 25617617 [TBL] [Abstract][Full Text] [Related]
18. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434 [TBL] [Abstract][Full Text] [Related]
19. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study. Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Escherichia coli for the production of riboflavin. Lin Z; Xu Z; Li Y; Wang Z; Chen T; Zhao X Microb Cell Fact; 2014 Jul; 13():104. PubMed ID: 25027702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]