BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 29079687)

  • 1. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.
    Orsini CA; Hernandez CM; Singhal S; Kelly KB; Frazier CJ; Bizon JL; Setlow B
    J Neurosci; 2017 Nov; 37(48):11537-11548. PubMed ID: 29079687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making.
    Bercovici DA; Princz-Lebel O; Tse MT; Moorman DE; Floresco SB
    eNeuro; 2018; 5(6):. PubMed ID: 30627636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circuit and Cell-Specific Contributions to Decision Making Involving Risk of Explicit Punishment in Male and Female Rats.
    Truckenbrod LM; Betzhold SM; Wheeler AR; Shallcross J; Singhal S; Harden S; Schwendt M; Frazier CJ; Bizon JL; Setlow B; Orsini CA
    J Neurosci; 2023 Jun; 43(26):4837-4855. PubMed ID: 37286352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.
    Orsini CA; Trotta RT; Bizon JL; Setlow B
    J Neurosci; 2015 Jan; 35(4):1368-79. PubMed ID: 25632115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.
    Larkin JD; Jenni NL; Floresco SB
    Psychopharmacology (Berl); 2016 Jan; 233(1):121-36. PubMed ID: 26432096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in young and aged rats.
    Hernandez CM; Orsini CA; Labiste CC; Wheeler AR; Ten Eyck TW; Bruner MM; Sahagian TJ; Harden SW; Frazier CJ; Setlow B; Bizon JL
    Elife; 2019 Apr; 8():. PubMed ID: 31017572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making.
    van Holstein M; MacLeod PE; Floresco SB
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109830. PubMed ID: 31811876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking.
    Piantadosi PT; Yeates DCM; Wilkins M; Floresco SB
    Neurobiol Learn Mem; 2017 Apr; 140():92-105. PubMed ID: 28242266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circuit and cell-specific contributions to decision making involving risk of explicit punishment in male and female rats.
    Truckenbrod LM; Betzhold SM; Wheeler AR; Shallcross J; Singhal S; Harden S; Schwendt M; Frazier CJ; Bizon JL; Setlow B; Orsini CA
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affective and cognitive mechanisms of risky decision making.
    Shimp KG; Mitchell MR; Beas BS; Bizon JL; Setlow B
    Neurobiol Learn Mem; 2015 Jan; 117():60-70. PubMed ID: 24642448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal Dynamics Underlying Prelimbic Prefrontal Cortical Regulation of Action Selection and Outcome Evaluation during Risk/Reward Decision-Making.
    Bercovici DA; Princz-Lebel O; Schumacher JD; Lo VM; Floresco SB
    J Neurosci; 2023 Feb; 43(7):1238-1255. PubMed ID: 36609453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Medial Orbitofrontal Cortex-Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice.
    Lichtenberg NT; Sepe-Forrest L; Pennington ZT; Lamparelli AC; Greenfield VY; Wassum KM
    J Neurosci; 2021 Aug; 41(34):7267-7277. PubMed ID: 34272313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kindling of the basolateral or central nucleus of the amygdala increases suboptimal choice in a rat gambling task and increases motor impulsivity in risk-preferring animals.
    Tremblay M; Adams WK; Winstanley CA
    Behav Brain Res; 2021 Feb; 398():112941. PubMed ID: 32991928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Activation of the Basolateral Amygdala Promotes Both Appetitive Conditioning and the Instrumental Pursuit of Reward Cues.
    Servonnet A; Hernandez G; El Hage C; Rompré PP; Samaha AN
    J Neurosci; 2020 Feb; 40(8):1732-1743. PubMed ID: 31953370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict.
    Ishikawa J; Sakurai Y; Ishikawa A; Mitsushima D
    Psychopharmacology (Berl); 2020 Mar; 237(3):639-654. PubMed ID: 31912190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal Dopamine D
    Jenni NL; Larkin JD; Floresco SB
    J Neurosci; 2017 Jun; 37(26):6200-6213. PubMed ID: 28546312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lesions of the basolateral amygdala and orbitofrontal cortex differentially affect acquisition and performance of a rodent gambling task.
    Zeeb FD; Winstanley CA
    J Neurosci; 2011 Feb; 31(6):2197-204. PubMed ID: 21307256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of medial prefrontal cortex to decision making involving risk of punishment.
    Orsini CA; Heshmati SC; Garman TS; Wall SC; Bizon JL; Setlow B
    Neuropharmacology; 2018 Sep; 139():205-216. PubMed ID: 30009836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.
    Hosking JG; Cocker PJ; Winstanley CA
    Neuropsychopharmacology; 2014 Jun; 39(7):1558-67. PubMed ID: 24496320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate prefrontal-subcortical circuits mediate different components of risk-based decision making.
    St Onge JR; Stopper CM; Zahm DS; Floresco SB
    J Neurosci; 2012 Feb; 32(8):2886-99. PubMed ID: 22357871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.