These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29079723)

  • 1. Exciton fission in monolayer transition metal dichalcogenide semiconductors.
    Steinhoff A; Florian M; Rösner M; Schönhoff G; Wehling TO; Jahnke F
    Nat Commun; 2017 Oct; 8(1):1166. PubMed ID: 29079723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling valley selective exciton scattering in monolayer WSe
    Manca M; Glazov MM; Robert C; Cadiz F; Taniguchi T; Watanabe K; Courtade E; Amand T; Renucci P; Marie X; Wang G; Urbaszek B
    Nat Commun; 2017 Apr; 8():14927. PubMed ID: 28367962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe
    Steinleitner P; Merkl P; Nagler P; Mornhinweg J; Schüller C; Korn T; Chernikov A; Huber R
    Nano Lett; 2017 Mar; 17(3):1455-1460. PubMed ID: 28182430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow cooling and efficient extraction of C-exciton hot carriers in MoS
    Wang L; Wang Z; Wang HY; Grinblat G; Huang YL; Wang D; Ye XH; Li XB; Bao Q; Wee AS; Maier SA; Chen QD; Zhong ML; Qiu CW; Sun HB
    Nat Commun; 2017 Jan; 8():13906. PubMed ID: 28054546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe
    Stier AV; Wilson NP; Clark G; Xu X; Crooker SA
    Nano Lett; 2016 Nov; 16(11):7054-7060. PubMed ID: 27718588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor.
    Chen SY; Goldstein T; Taniguchi T; Watanabe K; Yan J
    Nat Commun; 2018 Sep; 9(1):3717. PubMed ID: 30214001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach.
    Bieniek M; Sadecka K; Szulakowska L; Hawrylak P
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlayer excitons in a bulk van der Waals semiconductor.
    Arora A; Drüppel M; Schmidt R; Deilmann T; Schneider R; Molas MR; Marauhn P; Michaelis de Vasconcellos S; Potemski M; Rohlfing M; Bratschitsch R
    Nat Commun; 2017 Sep; 8(1):639. PubMed ID: 28935879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly correlated excitonic insulator in atomic double layers.
    Ma L; Nguyen PX; Wang Z; Zeng Y; Watanabe K; Taniguchi T; MacDonald AH; Mak KF; Shan J
    Nature; 2021 Oct; 598(7882):585-589. PubMed ID: 34707306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers.
    Wang J; Shi Q; Shih EM; Zhou L; Wu W; Bai Y; Rhodes D; Barmak K; Hone J; Dean CR; Zhu XY
    Phys Rev Lett; 2021 Mar; 126(10):106804. PubMed ID: 33784140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground and excited state exciton polarons in monolayer MoSe
    Goldstein T; Wu YC; Chen SY; Taniguchi T; Watanabe K; Varga K; Yan J
    J Chem Phys; 2020 Aug; 153(7):071101. PubMed ID: 32828093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton-Exciton Interaction beyond the Hydrogenic Picture in a MoSe_{2} Monolayer in the Strong Light-Matter Coupling Regime.
    Stepanov P; Vashisht A; Klaas M; Lundt N; Tongay S; Blei M; Höfling S; Volz T; Minguzzi A; Renard J; Schneider C; Richard M
    Phys Rev Lett; 2021 Apr; 126(16):167401. PubMed ID: 33961461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-Temperature Electron-Hole Liquid in Monolayer MoS
    Yu Y; Bataller AW; Younts R; Yu Y; Li G; Puretzky AA; Geohegan DB; Gundogdu K; Cao L
    ACS Nano; 2019 Sep; 13(9):10351-10358. PubMed ID: 31483608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitons in monolayer transition metal dichalcogenides.
    Li J; Zhong YL; Zhang D
    J Phys Condens Matter; 2015 Aug; 27(31):315301. PubMed ID: 26190703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors.
    Su H; Xu D; Cheng SW; Li B; Liu S; Watanabe K; Taniguchi T; Berkelbach TC; Hone JC; Delor M
    Nano Lett; 2022 Apr; 22(7):2843-2850. PubMed ID: 35294835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.
    Park KD; Jiang T; Clark G; Xu X; Raschke MB
    Nat Nanotechnol; 2018 Jan; 13(1):59-64. PubMed ID: 29158602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides.
    Moody G; Kavir Dass C; Hao K; Chen CH; Li LJ; Singh A; Tran K; Clark G; Xu X; Berghäuser G; Malic E; Knorr A; Li X
    Nat Commun; 2015 Sep; 6():8315. PubMed ID: 26382305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor.
    Wurdack M; Estrecho E; Todd S; Yun T; Pieczarka M; Earl SK; Davis JA; Schneider C; Truscott AG; Ostrovskaya EA
    Nat Commun; 2021 Sep; 12(1):5366. PubMed ID: 34508084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.