These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 29079975)
1. Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Hodges CM; Wood SA; Puddick J; McBride CG; Hamilton DP Environ Sci Pollut Res Int; 2018 Jan; 25(2):1079-1088. PubMed ID: 29079975 [TBL] [Abstract][Full Text] [Related]
2. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. McQuaid N; Zamyadi A; Prévost M; Bird DF; Dorner S J Environ Monit; 2011 Feb; 13(2):455-63. PubMed ID: 21157617 [TBL] [Abstract][Full Text] [Related]
3. Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. Bastien C; Cardin R; Veilleux E; Deblois C; Warren A; Laurion I J Environ Monit; 2011 Jan; 13(1):110-8. PubMed ID: 21103573 [TBL] [Abstract][Full Text] [Related]
4. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Thomson-Laing G; Puddick J; Wood SA Harmful Algae; 2020 Jul; 97():101869. PubMed ID: 32732055 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Zamyadi A; McQuaid N; Prévost M; Dorner S J Environ Monit; 2012 Feb; 14(2):579-88. PubMed ID: 22159157 [TBL] [Abstract][Full Text] [Related]
6. Measurement of cyanobacteria using in-vivo fluoroscopy -- effect of cyanobacterial species, pigments, and colonies. Chang DW; Hobson P; Burch M; Lin TF Water Res; 2012 Oct; 46(16):5037-48. PubMed ID: 22824675 [TBL] [Abstract][Full Text] [Related]
7. Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase. Rousso BZ; Bertone E; Stewart R; Aguiar A; Chuang A; Hamilton DP; Burford MA Water Res; 2022 Apr; 212():118127. PubMed ID: 35121420 [TBL] [Abstract][Full Text] [Related]
8. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
9. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212 [TBL] [Abstract][Full Text] [Related]
10. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Brient L; Lengronne M; Bertrand E; Rolland D; Sipel A; Steinmann D; Baudin I; Legeas M; Le Rouzic B; Bormans M J Environ Monit; 2008 Feb; 10(2):248-55. PubMed ID: 18246219 [TBL] [Abstract][Full Text] [Related]
11. Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Izydorczyk K; Tarczynska M; Jurczak T; Mrowczynski J; Zalewski M Environ Toxicol; 2005 Aug; 20(4):425-30. PubMed ID: 16007662 [TBL] [Abstract][Full Text] [Related]
12. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Bowling LC; Zamyadi A; Henderson RK Water Res; 2016 Nov; 105():22-33. PubMed ID: 27592302 [TBL] [Abstract][Full Text] [Related]
13. Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. Haakonsson S; Rodríguez-Gallego L; Somma A; Bonilla S Sci Total Environ; 2017 Dec; 609():1132-1139. PubMed ID: 28787786 [TBL] [Abstract][Full Text] [Related]
16. A suggested climate service for cyanobacteria blooms in the Baltic Sea - Comparing three monitoring methods. Karlson B; Arneborg L; Johansson J; Linders J; Liu Y; Olofsson M Harmful Algae; 2022 Oct; 118():102291. PubMed ID: 36195413 [TBL] [Abstract][Full Text] [Related]
17. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes. Bowling LC; Shaikh M; Brayan J; Malthus T Environ Monit Assess; 2017 Sep; 189(10):495. PubMed ID: 28887739 [TBL] [Abstract][Full Text] [Related]
18. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio. Francy DS; Brady AM; Ecker CD; Graham JL; Stelzer EA; Struffolino P; Dwyer DF; Loftin KA Harmful Algae; 2016 Sep; 58():23-34. PubMed ID: 28073455 [TBL] [Abstract][Full Text] [Related]
19. Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach. Alcántara I; Piccini C; Segura AM; Deus S; González C; Martínez de la Escalera G; Kruk C J Microbiol Methods; 2018 Aug; 151():20-27. PubMed ID: 29847777 [TBL] [Abstract][Full Text] [Related]
20. Chlorophyll-a determinations in mesocosms under varying nutrient and temperature treatments: in-situ fluorescence sensors versus in-vitro measurements. Levi EE; Jeppesen E; Nejstgaard JC; Davidson TA Open Res Eur; 2024; 4():69. PubMed ID: 38915372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]