These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29080011)

  • 1. Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices.
    Wilkinson J; Beegle-Krause CJ; Evers KU; Hughes N; Lewis A; Reed M; Wadhams P
    Ambio; 2017 Dec; 46(Suppl 3):423-441. PubMed ID: 29080011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental effects of Arctic oil spills and spill response technologies, introduction to a 5 year joint industry effort.
    Camus L; Smit MGD
    Mar Environ Res; 2019 Feb; 144():250-254. PubMed ID: 30686565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving oil spill trajectory modelling in the Arctic.
    Nordam T; Beegle-Krause CJ; Skancke J; Nepstad R; Reed M
    Mar Pollut Bull; 2019 Mar; 140():65-74. PubMed ID: 30803685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photooxidation and biodegradation potential of a light crude oil in first-year sea ice.
    Desmond DS; Saltymakova D; Smith A; Wolfe T; Snyder N; Polcwiartek K; Bautista M; Lemes M; Hubert CRJ; Barber DG; Isleifson D; Stern GA
    Mar Pollut Bull; 2021 Apr; 165():112154. PubMed ID: 33735684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal ecology in ice-covered Arctic seas - Considerations for spill response decision making.
    Aune M; Aniceto AS; Biuw M; Daase M; Falk-Petersen S; Leu E; Ottesen CAM; Sagerup K; Camus L
    Mar Environ Res; 2018 Oct; 141():275-288. PubMed ID: 30249455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and behaviour of weathered oil drifting into sea ice, using a novel wave and current flume.
    Singsaas I; Leirvik F; Daling PS; Guénette C; Sørheim KR
    Mar Pollut Bull; 2020 Oct; 159():111485. PubMed ID: 32763559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary computational surface oil spill trajectory model for ice-covered waters and its validation with two oil spill events: A field experiment in the Barents Sea and an accidental spill in the Gulf of Finland.
    Babaei H; Watson D
    Mar Pollut Bull; 2020 Dec; 161(Pt B):111786. PubMed ID: 33126141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The value of offshore field experiments in oil spill technology development for Norwegian waters.
    Faksness LG; Brandvik PJ; Daling PS; Singsaas I; Sørstrøm SE
    Mar Pollut Bull; 2016 Oct; 111(1-2):402-410. PubMed ID: 27531144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on how oil type and weathering of crude oils affect interaction with sea ice and polyethylene skimmer material.
    Øksenvåg JHC; Fossen M; Farooq U
    Mar Pollut Bull; 2019 Aug; 145():306-315. PubMed ID: 31590792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the long-term evolution of worst-case Arctic oil spills.
    Blanken H; Tremblay LB; Gaskin S; Slavin A
    Mar Pollut Bull; 2017 Mar; 116(1-2):315-331. PubMed ID: 28100401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.
    Bullock RJ; Aggarwal S; Perkins RA; Schnabel W
    J Environ Manage; 2017 Apr; 190():266-273. PubMed ID: 28063292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice.
    Vergeynst L; Christensen JH; Kjeldsen KU; Meire L; Boone W; Malmquist LMV; Rysgaard S
    Water Res; 2019 Jan; 148():459-468. PubMed ID: 30408732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian Network risk model for assessing oil spill recovery effectiveness in the ice-covered Northern Baltic Sea.
    Lu L; Goerlandt F; Valdez Banda OA; Kujala P; Höglund A; Arneborg L
    Mar Pollut Bull; 2019 Feb; 139():440-458. PubMed ID: 30686447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of climate change and seasonal trends on the fate of Arctic oil spills.
    Nordam T; Dunnebier DAE; Beegle-Krause CJ; Reed M; Slagstad D
    Ambio; 2017 Dec; 46(Suppl 3):442-452. PubMed ID: 29067639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of oil thickness in the presence of an ice edge.
    Nordam T; Litzler E; Skancke J; Singsaas I; Leirvik F; Johansen Ø
    Mar Pollut Bull; 2020 Jul; 156():111229. PubMed ID: 32510375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of marine oil spills in the Arctic with a Greenland perspective.
    Vergeynst L; Wegeberg S; Aamand J; Lassen P; Gosewinkel U; Fritt-Rasmussen J; Gustavson K; Mosbech A
    Sci Total Environ; 2018 Jun; 626():1243-1258. PubMed ID: 29898532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential impacts of offshore oil spills on polar bears in the Chukchi Sea.
    Wilson RR; Perham C; French-McCay DP; Balouskus R
    Environ Pollut; 2018 Apr; 235():652-659. PubMed ID: 29339335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current practices and knowledge supporting oil spill risk assessment in the Arctic.
    Wenning RJ; Robinson H; Bock M; Rempel-Hester MA; Gardiner W
    Mar Environ Res; 2018 Oct; 141():289-304. PubMed ID: 30274718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian inference modeling to rank response technologies in arctic marine oil spills.
    Das T; Goerlandt F
    Mar Pollut Bull; 2022 Dec; 185(Pt A):114203. PubMed ID: 36272316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oil spill response technologies on marine microorganisms in the high Arctic.
    Pančić M; Köhler E; Paulsen ML; Toxværd K; Lacroix C; Le Floch S; Hjorth M; Nielsen TG
    Mar Environ Res; 2019 Oct; 151():104785. PubMed ID: 31519452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.