BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 29080030)

  • 1. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury.
    Marichal N; Reali C; Rehermann MI; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1015():241-264. PubMed ID: 29080030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
    Fabbiani G; Reali C; Valentín-Kahan A; Rehermann MI; Fagetti J; Falco MV; Russo RE
    J Neurosci; 2020 Mar; 40(11):2246-2258. PubMed ID: 32001613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells.
    Espinosa-Jeffrey A; Oregel K; Wiggins L; Valera R; Bosnoyan K; Agbo C; Awosika O; Zhao PM; de Vellis J; Woerly S
    Adv Exp Med Biol; 2012; 760():25-52. PubMed ID: 23281512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
    Marichal N; Reali C; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1041():55-79. PubMed ID: 29204829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
    Hui SP; Nag TC; Ghosh S
    PLoS One; 2015; 10(12):e0143595. PubMed ID: 26630262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ependymal cell reactions in spinal cord segments after compression injury in adult rat.
    Takahashi M; Arai Y; Kurosawa H; Sueyoshi N; Shirai S
    J Neuropathol Exp Neurol; 2003 Feb; 62(2):185-94. PubMed ID: 12578228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration.
    Dervan AG; Roberts BL
    J Comp Neurol; 2003 Apr; 458(3):293-306. PubMed ID: 12619082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A latent lineage potential in resident neural stem cells enables spinal cord repair.
    Llorens-Bobadilla E; Chell JM; Le Merre P; Wu Y; Zamboni M; Bergenstråhle J; Stenudd M; Sopova E; Lundeberg J; Shupliakov O; Carlén M; Frisén J
    Science; 2020 Oct; 370(6512):. PubMed ID: 33004487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spinal ependymal zone as a source of endogenous repair cells across vertebrates.
    Becker CG; Becker T; Hugnot JP
    Prog Neurobiol; 2018 Nov; 170():67-80. PubMed ID: 29649499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.
    Margotta V
    Ital J Anat Embryol; 2008; 113(3):167-86. PubMed ID: 19205589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord.
    Marichal N; García G; Radmilovich M; Trujillo-Cenóz O; Russo RE
    Stem Cells; 2012 Sep; 30(9):2020-31. PubMed ID: 22821702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise.
    Foret A; Quertainmont R; Botman O; Bouhy D; Amabili P; Brook G; Schoenen J; Franzen R
    J Neurochem; 2010 Feb; 112(3):762-72. PubMed ID: 19925583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of Axon Growth, Plasticity, and Regeneration in the Context of Spinal Cord Injury.
    Filous AR; Schwab JM
    Am J Pathol; 2018 Jan; 188(1):53-62. PubMed ID: 29030051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current states of endogenous stem cells in adult spinal cord.
    Qin Y; Zhang W; Yang P
    J Neurosci Res; 2015 Mar; 93(3):391-8. PubMed ID: 25228050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
    Hamilton LK; Truong MK; Bednarczyk MR; Aumont A; Fernandes KJ
    Neuroscience; 2009 Dec; 164(3):1044-56. PubMed ID: 19747531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem cell transplantation for spinal cord injury repair.
    Lu P
    Prog Brain Res; 2017; 231():1-32. PubMed ID: 28554393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous neural stem cell responses to stroke and spinal cord injury.
    Grégoire CA; Goldenstein BL; Floriddia EM; Barnabé-Heider F; Fernandes KJ
    Glia; 2015 Aug; 63(8):1469-82. PubMed ID: 25921491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.