BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 29080030)

  • 21. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair.
    Li X; Zhao Y; Cheng S; Han S; Shu M; Chen B; Chen X; Tang F; Wang N; Tu Y; Wang B; Xiao Z; Zhang S; Dai J
    Biomaterials; 2017 Aug; 137():73-86. PubMed ID: 28544974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell transplantation therapy for spinal cord injury.
    Assinck P; Duncan GJ; Hilton BJ; Plemel JR; Tetzlaff W
    Nat Neurosci; 2017 Apr; 20(5):637-647. PubMed ID: 28440805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model.
    Nutt SE; Chang EA; Suhr ST; Schlosser LO; Mondello SE; Moritz CT; Cibelli JB; Horner PJ
    Exp Neurol; 2013 Oct; 248():491-503. PubMed ID: 23891888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximizing functional axon repair in the injured central nervous system: Lessons from neuronal development.
    Kaplan A; Bueno M; Hua L; Fournier AE
    Dev Dyn; 2018 Jan; 247(1):18-23. PubMed ID: 28643358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural stem cell plasticity: recruitment of endogenous populations for regeneration.
    Ferretti P
    Curr Neurovasc Res; 2004 Jul; 1(3):215-29. PubMed ID: 16181072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury.
    Liu Y; Tan B; Wang L; Long Z; Li Y; Liao W; Wu Y
    Int J Clin Exp Pathol; 2015; 8(4):3835-42. PubMed ID: 26097566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive changes in the injured spinal cord and their role in promoting functional recovery.
    Fouad K; Tse A
    Neurol Res; 2008 Feb; 30(1):17-27. PubMed ID: 18387259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.
    Rodriguez-Jimenez FJ; Alastrue-Agudo A; Stojkovic M; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2015 Nov; 16(11):26608-18. PubMed ID: 26561800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-based transplantation strategies to promote plasticity following spinal cord injury.
    Ruff CA; Wilcox JT; Fehlings MG
    Exp Neurol; 2012 May; 235(1):78-90. PubMed ID: 21333647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection.
    Du BL; Xiong Y; Zeng CG; He LM; Zhang W; Quan DP; Wu JL; Li Y; Zeng YS
    Brain Res; 2011 Jul; 1400():87-98. PubMed ID: 21658682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ependymal cells in the spinal cord as neuronal progenitors.
    Moreno-Manzano V
    Curr Opin Pharmacol; 2020 Feb; 50():82-87. PubMed ID: 31901616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system.
    Sîrbulescu RF; Zupanc GK
    Brain Res Rev; 2011 Jun; 67(1-2):73-93. PubMed ID: 21059372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius).
    Gilbert EAB; Vickaryous MK
    J Comp Neurol; 2018 Feb; 526(2):285-309. PubMed ID: 28980312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment.
    Ceci M; Mariano V; Romano N
    Rev Neurosci; 2018 Dec; 30(1):45-66. PubMed ID: 30067512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets.
    Yamane J; Nakamura M; Iwanami A; Sakaguchi M; Katoh H; Yamada M; Momoshima S; Miyao S; Ishii K; Tamaoki N; Nomura T; Okano HJ; Kanemura Y; Toyama Y; Okano H
    J Neurosci Res; 2010 May; 88(7):1394-405. PubMed ID: 20091712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.