BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29080485)

  • 1. Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex.
    Park I; Tabelin CB; Magaribuchi K; Seno K; Ito M; Hiroyoshi N
    J Hazard Mater; 2018 Feb; 344():322-332. PubMed ID: 29080485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier-microencapsulation of arsenopyrite using Al-catecholate complex: nature of oxidation products, effects on anodic and cathodic reactions, and coating stability under simulated weathering conditions.
    Park I; Tabelin CB; Seno K; Jeon S; Inano H; Ito M; Hiroyoshi N
    Heliyon; 2020 Jan; 6(1):e03189. PubMed ID: 31956714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced pyrite passivation by carrier-microencapsulation using Fe-catechol and Ti-catechol complexes.
    Li X; Park I; Tabelin CB; Naruwa K; Goda T; Harada C; Jeon S; Ito M; Hiroyoshi N
    J Hazard Mater; 2021 Aug; 416():126089. PubMed ID: 34492902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of arsenopyrite oxidation by microencapsulation using ferric-catecholate complexes and phosphate.
    Park I; Higuchi K; Tabelin CB; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2021 Apr; 269():129413. PubMed ID: 33388569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from arsenopyrite weathering in acid mine drainage: Kinetics, transformation, and effect of biochar.
    Cen L; Cheng H; Liu Q; Wang S; Wang X
    Environ Int; 2022 Dec; 170():107558. PubMed ID: 36202015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization.
    Chen HR; Zhang DR; Li Q; Nie ZY; Pakostova E
    Water Res; 2022 Sep; 223():118957. PubMed ID: 35970106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (Bio)dissolution of arsenopyrite coupled with multiple proportions of pyrite: Emphasis on the mobilization and existential state of arsenic.
    Tang A; Wang J; Zhang Y; Hong M; Liu Y; Yang B
    Chemosphere; 2023 Apr; 321():138128. PubMed ID: 36775027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenopyrite weathering in acidic water: Humic acid affection and arsenic transformation.
    Wang S; Zheng K; Li H; Feng X; Wang L; Liu Q
    Water Res; 2021 Apr; 194():116917. PubMed ID: 33609907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite.
    Hong J; Liu L; Zhang Z; Xia X; Yang L; Ning Z; Liu C; Qiu G
    J Hazard Mater; 2022 Jul; 433():128716. PubMed ID: 35358816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic oxidation of dissolved As(III) and arsenopyrite in the presence of oxygen: Formation and function of reactive oxygen species.
    Hong J; Liu L; Ning Z; Liu C; Qiu G
    Water Res; 2021 Sep; 202():117416. PubMed ID: 34284121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of arsenopyrite surface oxidation by sol-gel coatings.
    Khummalai N; Boonamnuayvitaya V
    J Biosci Bioeng; 2005 Mar; 99(3):277-84. PubMed ID: 16233789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Alorro RD; Yoo K; Raval S; Ito M; Hiroyoshi N
    J Hazard Mater; 2020 Nov; 399():122844. PubMed ID: 32534389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O
    Wang S; Jiao B; Zhang M; Zhang G; Wang X; Jia Y
    J Hazard Mater; 2018 Mar; 346():184-190. PubMed ID: 29274512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous spectroscopy and redox properties of carboxylate-bound titanium.
    Uppal R; Incarvito CD; Lakshmi KV; Valentine AM
    Inorg Chem; 2006 Feb; 45(4):1795-804. PubMed ID: 16471996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface characterization of arsenopyrite during chemical and biological oxidation.
    Deng S; Gu G; Xu B; Li L; Wu B
    Sci Total Environ; 2018 Jun; 626():349-356. PubMed ID: 29351882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for preparation and cleaning of uniformly sized arsenopyrite particles.
    Parthasarathy H; Baltrus JP; Dzombak DA; Karamalidis AK
    Geochem Trans; 2014 Dec; 15(1):14. PubMed ID: 25383043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis of Titanium Phosphates from Ilmenite Mineral Sand: Potential White Pigments for Cosmetic Applications.
    Palliyaguru L; Kulathunga MUS; Kumarasinghe KGUR; Jayaweera CD; Jayaweera PM
    J Cosmet Sci; 2019; 70(3):149-159. PubMed ID: 31398103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.