BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 29080535)

  • 1. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines.
    Chang JS; Yoon IH; Kim KW
    J Microbiol Biotechnol; 2007 May; 17(5):812-21. PubMed ID: 18051304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.
    Kumari N; Jagadevan S
    Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.
    Chang JS
    Environ Pollut; 2015 Nov; 206():315-23. PubMed ID: 26219073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal.
    Corsini A; Zaccheo P; Muyzer G; Andreoni V; Cavalca L
    J Hazard Mater; 2014 Mar; 269():89-97. PubMed ID: 24411461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone.
    Chen J; Bhattacharjee H; Rosen BP
    Mol Microbiol; 2015 Jun; 96(5):1042-52. PubMed ID: 25732202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle.
    Das S; Barooah M
    BMC Microbiol; 2018 Sep; 18(1):104. PubMed ID: 30180796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation.
    Jebelli MA; Maleki A; Amoozegar MA; Kalantar E; Shahmoradi B; Gharibi F
    Ecotoxicol Environ Saf; 2017 Jun; 140():170-176. PubMed ID: 28259061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.
    Koechler S; Arsène-Ploetze F; Brochier-Armanet C; Goulhen-Chollet F; Heinrich-Salmeron A; Jost B; Lièvremont D; Philipps M; Plewniak F; Bertin PN; Lett MC
    Res Microbiol; 2015 Apr; 166(3):205-14. PubMed ID: 25753102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal.
    Paul D; Poddar S; Sar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1481-92. PubMed ID: 25137536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogeochemical cyclic activity of bacterial arsB in arsenic-contaminated mines.
    Chang JS; Ren X; Kim KW
    J Environ Sci (China); 2008; 20(11):1348-55. PubMed ID: 19202875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel MAs(III)-selective ArsR transcriptional repressor.
    Chen J; Nadar VS; Rosen BP
    Mol Microbiol; 2017 Nov; 106(3):469-478. PubMed ID: 28861914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ecology of arsenic.
    Oremland RS; Stolz JF
    Science; 2003 May; 300(5621):939-44. PubMed ID: 12738852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.
    Kao AC; Chu YJ; Hsu FL; Liao VH
    J Contam Hydrol; 2013 Dec; 155():1-8. PubMed ID: 24096199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.