These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29080564)

  • 1. Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling.
    Rajib AI; Assumaning GA; Chang SY; Addai EB
    Water Environ Res; 2017 Nov; 89(11):1952-1960. PubMed ID: 29080564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of prior model calibration on predictions with ensemble Kalman filter.
    Huber E; Hendricks-Franssen HJ; Kaiser HP; Stauffer F
    Ground Water; 2011; 49(6):845-58. PubMed ID: 21210793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating spatially-variable first-order rate constants in groundwater reactive transport systems.
    Bailey RT; Baù D
    J Contam Hydrol; 2011 Mar; 122(1-4):104-21. PubMed ID: 21185621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.
    Ross JL; Andersen PF
    Ground Water; 2018 Jul; 56(4):571-579. PubMed ID: 29664107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The new potential for understanding groundwater contaminant transport.
    Hadley PW; Newell C
    Ground Water; 2014; 52(2):174-86. PubMed ID: 24224536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dilution and volatilization of groundwater contaminant discharges in streams.
    Aisopou A; Bjerg PL; Sonne AT; Balbarini N; Rosenberg L; Binning PJ
    J Contam Hydrol; 2015 Jan; 172():71-83. PubMed ID: 25496819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using an ensemble Kalman filter method to calibrate parameters of a prediction model for chemical transport from soil to surface runoff.
    Meng X; Tong J; Hu BX
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4404-4416. PubMed ID: 32939656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.
    Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD
    J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance comparisons of the three data assimilation methods for improved predictability of PM
    Dash UK; Park SY; Song CH; Yu J; Yumimoto K; Uno I
    Environ Pollut; 2023 Apr; 322():121099. PubMed ID: 36682612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the Leading Edge of Exceptionally Long Contaminant Plumes.
    Jackson R; Cross G
    Ground Water; 2016 Nov; 54(6):754-755. PubMed ID: 27502162
    [No Abstract]   [Full Text] [Related]  

  • 11. Use of isotope hydrology in groundwater conceptualization for modeling flow and contaminant transport at northwestern Sinai, Egypt.
    Hagagg KH; Sadek MA; Mohamed FA; El-Shahat MF
    Environ Monit Assess; 2018 Nov; 190(12):745. PubMed ID: 30470947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.
    Li L; Zhang M; Katzenstein K
    Ground Water; 2017 Nov; 55(6):871-878. PubMed ID: 28542717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application research of data assimilation in air pollution numerical prediction].
    Bai XP; Li H; Fang D; Costabile F; Liu FL
    Huan Jing Ke Xue; 2008 Feb; 29(2):283-9. PubMed ID: 18613492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulation of cropland soil moisture based on an ensemble Kalman filter].
    Liu Z; Zhou YL; Ju WM; Gao P
    Ying Yong Sheng Tai Xue Bao; 2011 Nov; 22(11):2943-53. PubMed ID: 22303673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy-stochastic characterization of site uncertainty and variability in groundwater flow and contaminant transport through a heterogeneous aquifer.
    Zhang K; Li H; Achari G
    J Contam Hydrol; 2009 Apr; 106(1-2):73-82. PubMed ID: 19217686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater pumping effects on contaminant loading management in agricultural regions.
    Park DK; Bae GO; Kim SK; Lee KK
    J Environ Manage; 2014 Jun; 139():97-108. PubMed ID: 24681649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Groundwater pollution risk mapping method].
    Shen LN; Li GH
    Huan Jing Ke Xue; 2010 Apr; 31(4):918-23. PubMed ID: 20527171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquifer Vulnerability Assessment Based on Sequence Stratigraphic and ³⁹Ar Transport Modeling.
    Sonnenborg TO; Scharling PB; Hinsby K; Rasmussen ES; Engesgaard P
    Ground Water; 2016 Mar; 54(2):214-30. PubMed ID: 26018029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Solute transport modeling application in groundwater organic contaminant source identification].
    Wang SF; Wang LY; Wang XH; Lin P; Liu JR; Xin BD; He GP
    Huan Jing Ke Xue; 2012 Mar; 33(3):760-70. PubMed ID: 22624366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge.
    Lewis J; Burman J; Edlund C; Simonsson L; Berglind R; Leffler P; Qvarfort U; Thiboutot S; Ampleman G; Meuken D; Duvalois W; Martel R; Sjöström J
    J Contam Hydrol; 2013 Mar; 146():8-15. PubMed ID: 23353636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.