These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29080793)

  • 21. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2010 Feb; 130(2):196-203. PubMed ID: 20095091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts.
    Yu X; Huang Y; Collin-Osdoby P; Osdoby P
    J Bone Miner Res; 2004 Dec; 19(12):2065-77. PubMed ID: 15537451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of the inner ear efferent system across vertebrate species.
    Simmons DD
    J Neurobiol; 2002 Nov; 53(2):228-50. PubMed ID: 12382278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses.
    Kil SH; Collazo A
    Dev Biol; 2001 May; 233(2):365-79. PubMed ID: 11336501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNA-182 regulates otocyst-derived cell differentiation and targets T-box1 gene.
    Wang XR; Zhang XM; Du J; Jiang H
    Hear Res; 2012 Apr; 286(1-2):55-63. PubMed ID: 22381690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axon guidance in the inner ear.
    Fekete DM; Campero AM
    Int J Dev Biol; 2007; 51(6-7):549-56. PubMed ID: 17891716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Organ culture system for inner ears].
    Zhou X; Van De Water TR
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1989; 24(3):140-2, 189. PubMed ID: 2702004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental expression of the actin depolymerizing factor ADF in the mouse inner ear and spiral ganglia.
    Herde MK; Friauf E; Rust MB
    J Comp Neurol; 2010 May; 518(10):1724-41. PubMed ID: 20235171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the Olig gene family in the developing mouse inner ear.
    Kanaya E; Yamahara K; Okano T; Yoshida A; Katsuno T; Takebayashi H; Ito J; Yamamoto N
    Gene Expr Patterns; 2015 Mar; 17(2):79-86. PubMed ID: 25778822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear.
    Radde-Gallwitz K; Pan L; Gan L; Lin X; Segil N; Chen P
    J Comp Neurol; 2004 Sep; 477(4):412-21. PubMed ID: 15329890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Apoptosis in the immune response of inner ear].
    Xu LJ; Gong SS; Wang JB; Huang X; Song P; Yin SH; Chen P; Li H
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2004 Nov; 39(11):663-8. PubMed ID: 15835816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance.
    Fritzsch B; Tessarollo L; Coppola E; Reichardt LF
    Prog Brain Res; 2004; 146():265-78. PubMed ID: 14699969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA content, mitotic activity, and incorporation of tritiated thymidine in the developing inner ear of the rat.
    Khan KM; Marovitz WF
    Anat Rec; 1982 Apr; 202(4):501-9. PubMed ID: 7072992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of canonical transient receptor potential channel (TRPC) 1-7 in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2009 Dec; 129(12):1351-8. PubMed ID: 19922081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons.
    Avila MA; Varela-Nieto I; Romero G; Mato JM; Giraldez F; Van De Water TR; Represa J
    Dev Biol; 1993 Sep; 159(1):266-75. PubMed ID: 8365565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pilot study: elevated circulating levels of the proinflammatory cytokine macrophage migration inhibitory factor in patients with chronic spinal cord injury.
    Stein A; Panjwani A; Sison C; Rosen L; Chugh R; Metz C; Bank M; Bloom O
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1498-507. PubMed ID: 23618747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear.
    Cayé-Thomasen P; Wagner N; Lidegaard Frederiksen B; Asal K; Thomsen J
    Hear Res; 2005 May; 203(1-2):21-7. PubMed ID: 15855026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fgf10 expression patterns in the developing chick inner ear.
    Sánchez-Guardado LÓ; Puelles L; Hidalgo-Sánchez M
    J Comp Neurol; 2013 Apr; 521(5):1136-64. PubMed ID: 22987750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changing shape and shaping change: Inducing the inner ear.
    Ladher RK
    Semin Cell Dev Biol; 2017 May; 65():39-46. PubMed ID: 27989562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.