These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 29080816)
1. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating. Meng J; Kang TT; Wang HF; Zhao BB; Lu RR Int J Biol Macromol; 2018 Feb; 107(Pt B):2604-2610. PubMed ID: 29080816 [TBL] [Abstract][Full Text] [Related]
2. Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin. Rodriguez NJ; Hu Q; Luo Y Molecules; 2019 Nov; 24(22):. PubMed ID: 31717559 [TBL] [Abstract][Full Text] [Related]
3. Micellization of casein-graft-dextran copolymer prepared through Maillard reaction. Pan X; Mu M; Hu B; Yao P; Jiang M Biopolymers; 2006 Jan; 81(1):29-38. PubMed ID: 16167326 [TBL] [Abstract][Full Text] [Related]
4. Acidic solution properties of beta-casein-graft-dextran copolymer prepared through Maillard reaction. Mu M; Pan X; Yao P; Jiang M J Colloid Interface Sci; 2006 Sep; 301(1):98-106. PubMed ID: 16716343 [TBL] [Abstract][Full Text] [Related]
5. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. Wang T; Xue J; Hu Q; Zhou M; Luo Y J Colloid Interface Sci; 2017 Dec; 507():119-130. PubMed ID: 28780331 [TBL] [Abstract][Full Text] [Related]
6. Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles. Shen D; Hu Q; Sun J; Pang X; Li X; Lu Y Int J Biol Macromol; 2021 Dec; 192():360-368. PubMed ID: 34634328 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of beta-casein and lysozyme. Pan X; Yu S; Yao P; Shao Z J Colloid Interface Sci; 2007 Dec; 316(2):405-12. PubMed ID: 17915243 [TBL] [Abstract][Full Text] [Related]
8. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Fan Y; Yi J; Zhang Y; Yokoyama W Food Chem; 2018 Jan; 239():1210-1218. PubMed ID: 28873542 [TBL] [Abstract][Full Text] [Related]
10. Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG. Yan X; Zhang X; McClements DJ; Zou L; Liu X; Liu F J Agric Food Chem; 2019 Dec; 67(48):13228-13236. PubMed ID: 31610115 [TBL] [Abstract][Full Text] [Related]
11. Improved Stability and In Vitro Anti-Arthritis Bioactivity of Curcumin-Casein Nanoparticles by Ultrasound-Driven Encapsulation. Li K; Zhang Y; Hao X; Xie D; Wang C; Zhang H; Jin P; Du Q Nutrients; 2022 Dec; 14(23):. PubMed ID: 36501222 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Sahu A; Kasoju N; Bora U Biomacromolecules; 2008 Oct; 9(10):2905-12. PubMed ID: 18785706 [TBL] [Abstract][Full Text] [Related]
13. Zein/caseinate/pectin complex nanoparticles: Formation and characterization. Chang C; Wang T; Hu Q; Luo Y Int J Biol Macromol; 2017 Nov; 104(Pt A):117-124. PubMed ID: 28579466 [TBL] [Abstract][Full Text] [Related]
14. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. Pan K; Zhong Q; Baek SJ J Agric Food Chem; 2013 Jun; 61(25):6036-43. PubMed ID: 23734864 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Ouyang Y; Chen L; Qian L; Lin X; Fan X; Teng H; Cao H Food Chem; 2020 Jul; 317():126418. PubMed ID: 32087512 [TBL] [Abstract][Full Text] [Related]
16. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Pan K; Luo Y; Gan Y; Baek SJ; Zhong Q Soft Matter; 2014 Sep; 10(35):6820-30. PubMed ID: 25082426 [TBL] [Abstract][Full Text] [Related]
17. Dextran based Polymeric Micelles as Carriers for Delivery of Hydrophobic Drugs. Mocanu G; Nichifor M; Sacarescu L Curr Drug Deliv; 2017; 14(3):406-415. PubMed ID: 27174313 [TBL] [Abstract][Full Text] [Related]
18. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers. Yi J; Lam TI; Yokoyama W; Cheng LW; Zhong F J Agric Food Chem; 2014 Sep; 62(35):8900-7. PubMed ID: 25131216 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin. Yuan Y; Li H; Zhu J; Liu C; Sun X; Wang D; Xu Y Int J Biol Macromol; 2020 May; 151():1074-1083. PubMed ID: 31739020 [TBL] [Abstract][Full Text] [Related]
20. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Elzoghby AO; Helmy MW; Samy WM; Elgindy NA Eur J Pharm Biopharm; 2013 Aug; 84(3):487-96. PubMed ID: 23403015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]