These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29081049)

  • 1. Molecular Modelling of Peptide-Based Materials for Biomedical Applications.
    Walsh TR
    Adv Exp Med Biol; 2017; 1030():37-50. PubMed ID: 29081049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.
    Walsh TR
    Acc Chem Res; 2017 Jul; 50(7):1617-1624. PubMed ID: 28665581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization.
    Serro AP; Bastos M; Pessoa JC; Saramago B
    J Biomed Mater Res A; 2004 Sep; 70(3):420-7. PubMed ID: 15293315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of biomolecule-biomaterial interactions at surfaces and interfaces.
    Wang Q; Wang MH; Wang KF; Liu Y; Zhang HP; Lu X; Zhang XD
    Biomed Mater; 2015 Jun; 10(3):032001. PubMed ID: 26065541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and biofunctionality of implanted materials.
    Cook SD; Dalton JE
    Alpha Omegan; 1992; 85(4):41-7. PubMed ID: 1308341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the peptide adsorption on ZrO2, TiZr, and TiO2 surfaces as a method for surface modification.
    Micksch T; Liebelt N; Scharnweber D; Schwenzer B
    ACS Appl Mater Interfaces; 2014 May; 6(10):7408-16. PubMed ID: 24735333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofunctionalization of materials for implants using engineered peptides.
    Khatayevich D; Gungormus M; Yazici H; So C; Cetinel S; Ma H; Jen A; Tamerler C; Sarikaya M
    Acta Biomater; 2010 Dec; 6(12):4634-41. PubMed ID: 20601249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.
    Meyers SR; Khoo X; Huang X; Walsh EB; Grinstaff MW; Kenan DJ
    Biomaterials; 2009 Jan; 30(3):277-86. PubMed ID: 18929406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving the use of peptides as components of biomaterials.
    Collier JH; Segura T
    Biomaterials; 2011 Jun; 32(18):4198-204. PubMed ID: 21515167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioengineering the skin-implant interface: the use of regenerative therapies in implanted devices.
    Peramo A; Marcelo CL
    Ann Biomed Eng; 2010 Jun; 38(6):2013-31. PubMed ID: 20140520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano hydroxyapatite structures influence early bone formation.
    Meirelles L; Arvidsson A; Andersson M; Kjellin P; Albrektsson T; Wennerberg A
    J Biomed Mater Res A; 2008 Nov; 87(2):299-307. PubMed ID: 18181110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.
    Boyd-Moss M; Fox K; Brandt M; Nisbet D; Williams R
    Adv Exp Med Biol; 2017; 1030():95-129. PubMed ID: 29081051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides as novel smart materials.
    Fairman R; Akerfeldt KS
    Curr Opin Struct Biol; 2005 Aug; 15(4):453-63. PubMed ID: 16043341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modern biomaterials: a review - bulk properties and implications of surface modifications.
    Roach P; Eglin D; Rohde K; Perry CC
    J Mater Sci Mater Med; 2007 Jul; 18(7):1263-77. PubMed ID: 17443395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro study of electrodeposited fluoridated hydroxyapatite coating on G-II titanium with a nanostructured TiO
    Lin JS; Tsai TB; Say WC; Chiu C; Chen SH
    Biomed Mater; 2017 Apr; 12(2):025018. PubMed ID: 28374679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of biologically relevant ions and organic molecules with titanium oxide (rutile) surfaces: A review on molecular dynamics studies.
    YazdanYar A; Aschauer U; Bowen P
    Colloids Surf B Biointerfaces; 2018 Jan; 161():563-577. PubMed ID: 29149762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-Based Materials for Cartilage Tissue Regeneration.
    Hastar N; Arslan E; Guler MO; Tekinay AB
    Adv Exp Med Biol; 2017; 1030():155-166. PubMed ID: 29081053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface treatments and roughness properties of Ti-based biomaterials.
    Bagno A; Di Bello C
    J Mater Sci Mater Med; 2004 Sep; 15(9):935-49. PubMed ID: 15448401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells.
    Knabe C; Howlett CR; Klar F; Zreiqat H
    J Biomed Mater Res A; 2004 Oct; 71(1):98-107. PubMed ID: 15368259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution three-dimensional probes of biomaterials and their interfaces.
    Grandfield K; Palmquist A; Engqvist H
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1337-51. PubMed ID: 22349245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.