BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 29081286)

  • 1. Source Apportionment of Sulfur and Light Extinction Using Receptor Modeling Techniques.
    Malm WC; Gebhart KA
    J Air Waste Manag Assoc; 1997 Mar; 47(3):250-268. PubMed ID: 29081286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second generation chemical mass balance source apportionment of sulfur oxides and sulfate at the Grand Canyon during the Project MOHAVE summer intensive.
    Eatough DJ; Farber RJ; Watson JG
    J Air Waste Manag Assoc; 2000 May; 50(5):759-74. PubMed ID: 10842940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attribution of Particulate Sulfur in the Grand Canyon to Specific Point Sources Using Tracer-Aerosol Gradient Interpretive Technique (TAGIT).
    Kuhns H; Green M; Pitchford M; Vasconcelos L; White W; Mirabella V
    J Air Waste Manag Assoc; 1999 Aug; 49(8):906-915. PubMed ID: 28060628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of winter and summer aerosol mass and light extinction on the Colorado plateau.
    Sisler JF; Malm WC
    J Air Waste Manag Assoc; 1997 Mar; 47(3):317-30. PubMed ID: 9216254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study.
    Watson JG; Chow JC; Lowenthal DH; Antony Chen LW; Shaw S; Edgerton ES; Blanchard CL
    J Air Waste Manag Assoc; 2015 Sep; 65(9):1104-18. PubMed ID: 26102211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relating summer ambient particulate sulfur, sulfur dioxide, and light scattering to gaseous tracer emissions from the MOHAVE Power Project.
    Mirabella VA; Farber RJ
    J Air Waste Manag Assoc; 2000 May; 50(5):746-55; discussion 756-8. PubMed ID: 10842939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconciliation and interpretation of the Big Bend National Park light extinction source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part II.
    Pitchford ML; Schichtel BA; Gebhart KA; Barna MG; Malm WC; Tombach IH; Knipping EM
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1726-32. PubMed ID: 16350369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.
    Argyropoulos G; Manoli E; Kouras A; Samara C
    Sci Total Environ; 2012 Aug; 432():12-22. PubMed ID: 22705902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance.
    Ke L; Liu W; Wang Y; Russell AG; Edgerton ES; Zheng M
    Sci Total Environ; 2008 May; 394(2-3):290-302. PubMed ID: 18313727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.
    Hinkley JT; Bridgman HA; Buhre BJ; Gupta RP; Nelson PF; Wall TF
    Sci Total Environ; 2008 Feb; 391(1):104-13. PubMed ID: 18054995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source apportionment of ambient PM2.5 in Santiago, Chile: 1999 and 2004 results.
    Jorquera H; Barraza F
    Sci Total Environ; 2012 Oct; 435-436():418-29. PubMed ID: 22878102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential particulate impacts at the Grand Canyon from northwestern Mexico.
    Eatough DJ; Green M; Moran W; Farber R
    Sci Total Environ; 2001 Aug; 276(1-3):69-82. PubMed ID: 11516140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source contributions to fine particulate matter in an urban atmosphere.
    Park SS; Kim YJ
    Chemosphere; 2005 Apr; 59(2):217-26. PubMed ID: 15722093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.
    Dall'Osto M; Hellebust S; Healy RM; O'Connor IP; Kourtchev I; Sodeau JR; Ovadnevaite J; Ceburnis D; O'Dowd CD; Wenger JC
    Sci Total Environ; 2014 Sep; 493():197-208. PubMed ID: 24950495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.
    Villalobos AM; Barraza F; Jorquera H; Schauer JJ
    Sci Total Environ; 2015 Apr; 512-513():133-142. PubMed ID: 25617780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of scrubber installation at the Navajo Generating Station on particulate sulfur and visibility levels in the Grand Canyon.
    Green M; Farber R; Lien N; Gebhart K; Molenar J; Iyer H; Eatough D
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1675-82. PubMed ID: 16350365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.