These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method. Lee JH; Griffith BE J Comput Phys; 2022 May; 457():. PubMed ID: 35300097 [TBL] [Abstract][Full Text] [Related]
4. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Gao H; Wang H; Berry C; Luo X; Griffith BE Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1199-222. PubMed ID: 24799090 [TBL] [Abstract][Full Text] [Related]
5. A fully resolved active musculo-mechanical model for esophageal transport. Kou W; Bhalla AP; Griffith BE; Pandolfino JE; Kahrilas PJ; Patankar NA J Comput Phys; 2015 Oct; 298():446-465. PubMed ID: 26190859 [TBL] [Abstract][Full Text] [Related]
6. The Comparison of Different Constitutive Laws and Fiber Architectures for the Aortic Valve on Fluid-Structure Interaction Simulation. Cai L; Zhang R; Li Y; Zhu G; Ma X; Wang Y; Luo X; Gao H Front Physiol; 2021; 12():682893. PubMed ID: 34248670 [TBL] [Abstract][Full Text] [Related]
7. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity. Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394 [TBL] [Abstract][Full Text] [Related]
8. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study. Kou W; Pandolfino JE; Kahrilas PJ; Patankar NA Neurogastroenterol Motil; 2017 Jun; 29(6):. PubMed ID: 28054418 [TBL] [Abstract][Full Text] [Related]
9. Hybrid finite difference/finite element immersed boundary method. Griffith BE; Luo X Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587 [TBL] [Abstract][Full Text] [Related]
10. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Griffith BE Int J Numer Method Biomed Eng; 2012 Mar; 28(3):317-45. PubMed ID: 25830200 [TBL] [Abstract][Full Text] [Related]
11. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional flows in a hyperelastic vessel under external pressure. Zhang S; Luo X; Cai Z Biomech Model Mechanobiol; 2018 Aug; 17(4):1187-1207. PubMed ID: 29744606 [TBL] [Abstract][Full Text] [Related]
13. Immersed boundary-finite element model of fluid-structure interaction in the aortic root. Flamini V; DeAnda A; Griffith BE Theor Comput Fluid Dyn; 2016 Apr; 30(1):139-164. PubMed ID: 26951951 [TBL] [Abstract][Full Text] [Related]
14. A Nodal Immersed Finite Element-Finite Difference Method. Wells D; Vadala-Roth B; Lee JH; Griffith BE J Comput Phys; 2023 Mar; 477():. PubMed ID: 37007629 [TBL] [Abstract][Full Text] [Related]
15. A computational framework for biomaterials containing three-dimensional random fiber networks based on the affine kinematics. Jin T Biomech Model Mechanobiol; 2022 Apr; 21(2):685-708. PubMed ID: 35084592 [TBL] [Abstract][Full Text] [Related]
16. Simulating Fiber-Reinforced Concrete Mechanical Performance Using CT-Based Fiber Orientation Data. Buljak V; Oesch T; Bruno G Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30823665 [TBL] [Abstract][Full Text] [Related]
17. A voxel-based finite element model for the prediction of bladder deformation. Chai X; van Herk M; Hulshof MC; Bel A Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275 [TBL] [Abstract][Full Text] [Related]
18. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve. Joda A; Jin Z; Summers J; Korossis S Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162 [TBL] [Abstract][Full Text] [Related]
19. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
20. A Numerical Simulation Method for the One-Step Compression-Stamping Process of Continuous Fiber Reinforced Thermoplastic Composites. Chen L; Deng T; Zhou H; Huang Z; Peng X; Zhou H Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]