These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29081898)

  • 1. MAHALANOBIS DISTANCE FOR CLASS AVERAGING OF CRYO-EM IMAGES.
    Bhamre T; Zhao Z; Singer A
    Proc IEEE Int Symp Biomed Imaging; 2017 Apr; 2017():654-658. PubMed ID: 29081898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering.
    Wang X; Lu Y; Liu J
    Curr Issues Mol Biol; 2021 Oct; 43(3):1652-1668. PubMed ID: 34698131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simcryocluster: a semantic similarity clustering method of cryo-EM images by adopting contrastive learning.
    Tang H; Wang Y; Ouyang J; Wang J
    BMC Bioinformatics; 2024 Feb; 25(1):77. PubMed ID: 38378489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer.
    Li H; Zhang H; Wan X; Yang Z; Li C; Li J; Han R; Zhu P; Zhang F
    Bioinformatics; 2022 Mar; 38(7):2022-2029. PubMed ID: 35134862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.
    Huang C; Tagare HD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3329-32. PubMed ID: 25570703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction.
    Al-Azzawi A; Ouadou A; Duan Y; Cheng J
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):534. PubMed ID: 33371884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous cryo-EM projection image classification using a two-stage spectral clustering based on novel distance measures.
    Wang X; Lu Y; Lin X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35255494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM.
    Al-Azzawi A; Ouadou A; Tanner JJ; Cheng J
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31480377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å.
    Turoňová B; Schur FKM; Wan W; Briggs JAG
    J Struct Biol; 2017 Sep; 199(3):187-195. PubMed ID: 28743638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering Enhancement of Noisy Cryo-Electron Microscopy Single-Particle Images with a Network Structural Similarity Metric.
    Yin S; Zhang B; Yang Y; Huang Y; Shen HB
    J Chem Inf Model; 2019 Apr; 59(4):1658-1667. PubMed ID: 30676727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images.
    Al-Azzawi A; Ouadou A; Tanner JJ; Cheng J
    BMC Bioinformatics; 2019 Jun; 20(1):326. PubMed ID: 31195977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DRPnet: automated particle picking in cryo-electron micrographs using deep regression.
    Nguyen NP; Ersoy I; Gotberg J; Bunyak F; White TA
    BMC Bioinformatics; 2021 Feb; 22(1):55. PubMed ID: 33557750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.
    Galaz-Montoya JG; Hecksel CW; Baldwin PR; Wang E; Weaver SC; Schmid MF; Ludtke SJ; Chiu W
    J Struct Biol; 2016 Jun; 194(3):383-94. PubMed ID: 27016284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the signal-to-noise ratio and generating contrast for cryo-EM images with convolutional neural networks.
    Palovcak E; Asarnow D; Campbell MG; Yu Z; Cheng Y
    IUCrJ; 2020 Nov; 7(Pt 6):1142-1150. PubMed ID: 33209325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules.
    Yao R; Qian J; Huang Q
    Bioinformatics; 2020 Feb; 36(4):1252-1259. PubMed ID: 31584618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs.
    Dhakal A; Gyawali R; Wang L; Cheng J
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images.
    Lei H; Yang Y
    Front Genet; 2020; 11():627746. PubMed ID: 33552141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.
    Zhu Y; Ouyang Q; Mao Y
    BMC Bioinformatics; 2017 Jul; 18(1):348. PubMed ID: 28732461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors.
    Singer A; Zhao Z; Shkolnisky Y; Hadani R
    SIAM J Imaging Sci; 2011 Jun; 4(2):723-759. PubMed ID: 22506089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulated annealing approach for resolution guided homogeneous cryo-electron microscopy image selection.
    Shi J; Zeng X; Jiang R; Jiang T; Xu M
    Quant Biol; 2020 Mar; 8(1):51-63. PubMed ID: 32477613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.