BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29081954)

  • 21. 3D-Printing Multi-Component Multi-Domain Supramolecular Gels with Differential Conductivity.
    Vadukoote TT; Avestro AJ; Smith DK
    Angew Chem Int Ed Engl; 2024 Jun; ():e202409757. PubMed ID: 38935516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanically Robust Hybrid Gel Beads Loaded with "Naked" Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki-Miyaura Reaction.
    Albino M; Burden TJ; Piras CC; Whitwood AC; Fairlamb IJS; Smith DK
    ACS Sustain Chem Eng; 2023 Feb; 11(5):1678-1689. PubMed ID: 36778525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-controllable molecular hydrogels for drug delivery.
    Liu H; Song Z; Chen X
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4837-42. PubMed ID: 24757951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction.
    Isik M; Eylem CC; Haciefendioglu T; Yildirim E; Sari B; Nemutlu E; Emregul E; Okesola BO; Derkus B
    Biomater Sci; 2021 Dec; 9(24):8270-8284. PubMed ID: 34766605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility.
    Li W; Hu X; Chen J; Wei Z; Song C; Huang R
    J Mater Sci Mater Med; 2020 Jul; 31(8):73. PubMed ID: 32729101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-stage enzyme mediated drug release from LMWG hydrogels.
    van Bommel KJ; Stuart MC; Feringa BL; van Esch J
    Org Biomol Chem; 2005 Aug; 3(16):2917-20. PubMed ID: 16186921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High aspect ratio, processable coordination polymer gel nanotubes based on an AIE-active LMWG with tunable emission.
    Suresh VM; De A; Maji TK
    Chem Commun (Camb); 2015 Oct; 51(78):14678-81. PubMed ID: 26291066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives--efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future.
    Okesola BO; Vieira VM; Cornwell DJ; Whitelaw NK; Smith DK
    Soft Matter; 2015 Jun; 11(24):4768-87. PubMed ID: 26016799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide.
    Firipis K; Boyd-Moss M; Long B; Dekiwadia C; Hoskin W; Pirogova E; Nisbet DR; Kapsa RMI; Quigley AF; Williams RJ
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3340-3350. PubMed ID: 34125518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator.
    Friggeri A; Feringa BL; van Esch J
    J Control Release; 2004 Jun; 97(2):241-8. PubMed ID: 15196751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of DBS, DBS-COOH, and DBS-CONHNH
    Knani D; Alperstein D
    J Phys Chem A; 2017 Feb; 121(5):1113-1120. PubMed ID: 28094942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimuli-Responsive Nucleotide-Amino Acid Hybrid Supramolecular Hydrogels.
    Mulvee M; Vasiljevic N; Mann S; Patil AJ
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; KoƧ B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release.
    Lee SY; Jeon SI; Sim SB; Byun Y; Ahn CH
    Acta Biomater; 2021 Sep; 131():286-301. PubMed ID: 34246803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of the kinetics of self-assembly on the properties of dipeptide hydrogels.
    Cardoso AZ; Alvarez AE; Cattoz BN; Griffiths PC; King SM; Frith WJ; Adams DJ
    Faraday Discuss; 2013; 166():101-16. PubMed ID: 24611271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatially resolved multicomponent gels.
    Draper ER; Eden EG; McDonald TO; Adams DJ
    Nat Chem; 2015 Oct; 7(10):848-52. PubMed ID: 26391086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low Molecular Weight Supramolecular Hydrogels for Sustained and Localized
    Raymond DM; Abraham BL; Fujita T; Watrous MJ; Toriki ES; Takano T; Nilsson BL
    ACS Appl Bio Mater; 2019 Apr; 2(5):2116-2124. PubMed ID: 34136760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular Nanofibrous Peptide/Polymer Hydrogels for the Multiplexing of Bioactive Signals.
    Radvar E; Azevedo HS
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4646-4656. PubMed ID: 33448837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.