These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29082071)

  • 1. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity.
    Žurauskas M; Barnstedt O; Frade-Rodriguez M; Waddell S; Booth MJ
    Biomed Opt Express; 2017 Oct; 8(10):4369-4379. PubMed ID: 29082071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.
    Jiang SA; Campusano JM; Su H; O'Dowd DK
    J Neurophysiol; 2005 Jul; 94(1):491-500. PubMed ID: 15772240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging.
    Wang Y; Guo HF; Pologruto TA; Hannan F; Hakker I; Svoboda K; Zhong Y
    J Neurosci; 2004 Jul; 24(29):6507-14. PubMed ID: 15269261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in
    Elliott AD; Berndt A; Houpert M; Roy S; Scott RL; Chow CC; Shroff H; White BH
    Elife; 2021 Jul; 10():. PubMed ID: 34236312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution.
    Pech U; Pooryasin A; Birman S; Fiala A
    J Comp Neurol; 2013 Dec; 521(17):3992-4026. PubMed ID: 23784863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic developmental plasticity allows robust sparse wiring of the
    Elkahlah NA; Rogow JA; Ahmed M; Clowney EJ
    Elife; 2020 Jan; 9():. PubMed ID: 31913123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping.
    Qin Z; She Z; Chen C; Wu W; Lau JKY; Ip NY; Qu JY
    Nat Biotechnol; 2022 Nov; 40(11):1663-1671. PubMed ID: 35697805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells.
    Pech U; Dipt S; Barth J; Singh P; Jauch M; Thum AS; Fiala A; Riemensperger T
    Front Neural Circuits; 2013; 7():147. PubMed ID: 24065891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep.
    Adel M; Chen N; Zhang Y; Reed ML; Quasney C; Griffith LC
    J Neurosci; 2022 May; 42(21):4297-4310. PubMed ID: 35474278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision.
    Onda M; Takeuchi RF; Isobe K; Suzuki T; Masaki Y; Morimoto N; Osakada F
    Neurosci Res; 2021 Oct; 171():9-18. PubMed ID: 33607170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity.
    Sinha S; Liang L; Ho ET; Urbanek KE; Luo L; Baer TM; Schnitzer MJ
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18374-9. PubMed ID: 24167298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volumetric optical coherence microscopy with a high space-bandwidth-
    Liu S; Mulligan JA; Adie SG
    Biomed Opt Express; 2018 Jul; 9(7):3137-3152. PubMed ID: 29984088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy.
    Karagyozov D; Mihovilovic Skanata M; Lesar A; Gershow M
    Cell Rep; 2018 Oct; 25(5):1371-1383.e10. PubMed ID: 30380425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging.
    Bushey D; Tononi G; Cirelli C
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4785-90. PubMed ID: 25825756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seeing Natural Images through the Eye of a Fly with Remote Focusing Two-Photon Microscopy.
    Schuetzenberger A; Borst A
    iScience; 2020 Jun; 23(6):101170. PubMed ID: 32502966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton imaging of neural structure and activity in
    Aragon MJ; Mok AT; Shea J; Wang M; Kim H; Barkdull N; Xu C; Yapici N
    Elife; 2022 Jan; 11():. PubMed ID: 35073257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy.
    Demas J; Manley J; Tejera F; Barber K; Kim H; Traub FM; Chen B; Vaziri A
    Nat Methods; 2021 Sep; 18(9):1103-1111. PubMed ID: 34462592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning on-chip light-sheet microscopy enabling video-rate volumetric imaging of dynamic biological specimens.
    Chen X; Ping J; Sun Y; Yi C; Liu S; Gong Z; Fei P
    Lab Chip; 2021 Sep; 21(18):3420-3428. PubMed ID: 34486609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term optical brain imaging in live adult fruit flies.
    Huang C; Maxey JR; Sinha S; Savall J; Gong Y; Schnitzer MJ
    Nat Commun; 2018 Feb; 9(1):872. PubMed ID: 29491443
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.