These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29082072)

  • 1. Quantitative photoacoustic tomography augmented with surface light measurements.
    Nykänen O; Pulkkinen A; Tarvainen T
    Biomed Opt Express; 2017 Oct; 8(10):4380-4395. PubMed ID: 29082072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative photoacoustic tomography using illuminations from a single direction.
    Pulkkinen A; Cox BT; Arridge SR; Kaipio JP; Tarvainen T
    J Biomed Opt; 2015 Mar; 20(3):036015. PubMed ID: 25803187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-stage approach for estimating optical parameters in spectral quantitative photoacoustic tomography.
    Suhonen M; Pulkkinen A; Tarvainen T
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):527-542. PubMed ID: 38437444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation Monte Carlo Method for Quantitative Photoacoustic Tomography.
    Leino AA; Lunttila T; Mozumder M; Pulkkinen A; Tarvainen T
    IEEE Trans Med Imaging; 2020 Oct; 39(10):2985-2995. PubMed ID: 32217473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Image Reconstruction in Quantitative Photoacoustic Tomography.
    Tarvainen T; Pulkkinen A; Cox BT; Kaipio JP; Arridge SR
    IEEE Trans Med Imaging; 2013 Dec; 32(12):2287-98. PubMed ID: 24001987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative photoacoustic tomography: modeling and inverse problems.
    Tarvainen T; Cox B
    J Biomed Opt; 2024 Jan; 29(Suppl 1):S11509. PubMed ID: 38125717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.
    Pulkkinen A; Cox BT; Arridge SR; Goh H; Kaipio JP; Tarvainen T
    IEEE Trans Med Imaging; 2016 Nov; 35(11):2497-2508. PubMed ID: 27323361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Errors Due to Uncertainties in Ultrasound Sensor Locations in Photoacoustic Tomography.
    Sahlstrom T; Pulkkinen A; Tick J; Leskinen J; Tarvainen T
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2140-2150. PubMed ID: 31940525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating chromophore distributions from multiwavelength photoacoustic images.
    Cox BT; Arridge SR; Beard PC
    J Opt Soc Am A Opt Image Sci Vis; 2009 Feb; 26(2):443-55. PubMed ID: 19183699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography.
    Shao P; Cox B; Zemp RJ
    Appl Opt; 2011 Jul; 50(19):3145-54. PubMed ID: 21743514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative photoacoustic imaging of two-photon absorption.
    Bardsley P; Ren K; Zhang R
    J Biomed Opt; 2018 Jan; 23(1):1-11. PubMed ID: 29297207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image reconstruction with the Heaviside equation in photoacoustic tomography accounting for dispersive acoustic media.
    Moock VM; Gutiérrez-Reyes EA; García-Segundo C
    J Biomed Opt; 2018 Jul; 23(7):1-12. PubMed ID: 30027712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative photoacoustic tomography with light fluence compensation based on radiance Monte Carlo model.
    Zheng S; Yingsa H; Meichen S; Qi M
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36821863
    [No Abstract]   [Full Text] [Related]  

  • 14. Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework.
    Tick J; Pulkkinen A; Tarvainen T
    Biomed Phys Eng Express; 2019 Nov; 6(1):015003. PubMed ID: 33438591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method.
    Cox BT; Arridge SR; Köstli KP; Beard PC
    Appl Opt; 2006 Mar; 45(8):1866-75. PubMed ID: 16572706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative photoacoustic image reconstruction improves accuracy in deep tissue structures.
    Mastanduno MA; Gambhir SS
    Biomed Opt Express; 2016 Oct; 7(10):3811-3825. PubMed ID: 27867695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image reconstruction of the absorption coefficients with l 1-norm minimization from photoacoustic measurements.
    Okawa S; Hirasawa T; Kushibiki T; Ishihara M
    Quant Imaging Med Surg; 2015 Feb; 5(1):78-85. PubMed ID: 25694957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally Efficient Forward Operator for Photoacoustic Tomography Based on Coordinate Transformations.
    Sahlstrom T; Pulkkinen A; Leskinen J; Tarvainen T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2172-2182. PubMed ID: 33600313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse problems of combined photoacoustic and optical coherence tomography.
    Elbau P; Mindrinos L; Scherzer O
    Math Methods Appl Sci; 2017 Feb; 40(3):505-522. PubMed ID: 28133404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear iterative perturbation scheme with simplified spherical harmonics (SP
    Wang Y; Xu M; Gao F; Kang F; Zhu S
    J Biophotonics; 2021 Jun; 14(6):e202000446. PubMed ID: 33576563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.