These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 29082251)
1. Enhancement of Surfactin and Fengycin Production by Hmidet N; Ben Ayed H; Jacques P; Nasri M Biomed Res Int; 2017; 2017():5893123. PubMed ID: 29082251 [TBL] [Abstract][Full Text] [Related]
2. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production. Yaseen Y; Gancel F; Béchet M; Drider D; Jacques P Arch Microbiol; 2017 Dec; 199(10):1371-1382. PubMed ID: 28735377 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide. Jakinala P; Lingampally N; Kyama A; Hameeda B Ecotoxicol Environ Saf; 2019 Oct; 182():109372. PubMed ID: 31255866 [TBL] [Abstract][Full Text] [Related]
4. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Zhang J; Xue Q; Gao H; Lai H; Wang P Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284 [TBL] [Abstract][Full Text] [Related]
6. Effects of Different Cultivation Parameters on the Production of Surfactin Variants by a Bartal A; Vigneshwari A; Bóka B; Vörös M; Takács I; Kredics L; Manczinger L; Varga M; Vágvölgyi C; Szekeres A Molecules; 2018 Oct; 23(10):. PubMed ID: 30340314 [TBL] [Abstract][Full Text] [Related]
7. Residual biomass from surfactin production is a source of arginase and adsorbed surfactin that is useful for environmental remediation. de Carvalho Silveira T; Gomes WE; Tonon GC; Beatto TG; Spogis N; Cunha LHD; Lattaro BP; Nogueira AB; Mendes RK; Alvarenga DO; Etchegaray A World J Microbiol Biotechnol; 2021 Jun; 37(7):123. PubMed ID: 34160683 [TBL] [Abstract][Full Text] [Related]
8. Screening of Bacillus mojavensis biofilms and biosurfactants using laser ablation electrospray ionization mass spectroscopy. Bacon CW; Hinton DM; Mitchell TR J Appl Microbiol; 2018 Sep; 125(3):867-875. PubMed ID: 29729222 [TBL] [Abstract][Full Text] [Related]
9. Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry. Fanaei M; Jurcic K; Emtiazi G World J Microbiol Biotechnol; 2021 May; 37(6):97. PubMed ID: 33969441 [TBL] [Abstract][Full Text] [Related]
10. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Coutte F; Lecouturier D; Yahia SA; Leclère V; Béchet M; Jacques P; Dhulster P Appl Microbiol Biotechnol; 2010 Jun; 87(2):499-507. PubMed ID: 20221757 [TBL] [Abstract][Full Text] [Related]
11. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
12. Screening of a Bacillus subtilis Strain Producing Multiple Types of Cyclic Lipopeptides and Evaluation of Their Surface-tension-lowering Activities. Habe H; Taira T; Imura T J Oleo Sci; 2017; 66(7):785-790. PubMed ID: 28674328 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain. Jemil N; Manresa A; Rabanal F; Ben Ayed H; Hmidet N; Nasri M J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Aug; 1060():374-386. PubMed ID: 28666229 [TBL] [Abstract][Full Text] [Related]
14. Optimization of surfactin production by Bacillus subtilis isolate BS5. Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA Appl Biochem Biotechnol; 2008 Sep; 150(3):305-25. PubMed ID: 18682904 [TBL] [Abstract][Full Text] [Related]
15. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. Pecci Y; Rivardo F; Martinotti MG; Allegrone G J Mass Spectrom; 2010 Jul; 45(7):772-8. PubMed ID: 20623484 [TBL] [Abstract][Full Text] [Related]
16. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination. Etchegaray A; Coutte F; Chataigné G; Béchet M; Dos Santos RH; Leclère V; Jacques P Can J Microbiol; 2017 Jan; 63(1):46-60. PubMed ID: 27912317 [TBL] [Abstract][Full Text] [Related]
17. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species. Geissler M; Oellig C; Moss K; Schwack W; Henkel M; Hausmann R J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb; 1044-1045():214-224. PubMed ID: 28153674 [TBL] [Abstract][Full Text] [Related]
18. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production. Zhang F; Huo K; Song X; Quan Y; Wang S; Zhang Z; Gao W; Yang C Microb Cell Fact; 2020 Dec; 19(1):223. PubMed ID: 33287813 [TBL] [Abstract][Full Text] [Related]
19. [Isolation and identification of surfactin producing Bacillus subtilis strain and its effect of surfactin on crude oil]. Wang D; Liu Y; Lin Z; Yang Z; Hao C Wei Sheng Wu Xue Bao; 2008 Mar; 48(3):304-11. PubMed ID: 18479055 [TBL] [Abstract][Full Text] [Related]
20. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Whang LM; Liu PW; Ma CC; Cheng SS J Hazard Mater; 2008 Feb; 151(1):155-63. PubMed ID: 17614195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]