These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29082497)

  • 21. Quantitative Detection of Nucleocytoplasmic Transport of Native Proteins in Single Cells.
    Cao Z; Lu C
    Methods Mol Biol; 2015; 1346():239-52. PubMed ID: 26542726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvements in high-throughput, high-content analysis of single cells.
    Tárnok A
    Cytometry A; 2013 Apr; 83(4):331-2. PubMed ID: 23520155
    [No Abstract]   [Full Text] [Related]  

  • 23. Optimizing transformations for automated, high throughput analysis of flow cytometry data.
    Finak G; Perez JM; Weng A; Gottardo R
    BMC Bioinformatics; 2010 Nov; 11():546. PubMed ID: 21050468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-cell culture in microwells.
    Lindström S; Andersson-Svahn H
    Methods Mol Biol; 2012; 853():41-52. PubMed ID: 22323139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow cytometry of v-Abl transformed pre-B cells heterogeneous in ectopic expression levels reveals Ras dose-response.
    Peacock RW; Lawhorn IE; Ferreira JP; Wang CL
    J Immunol Methods; 2012 Oct; 384(1-2):177-83. PubMed ID: 22835434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput precision measurement of subcellular localization in single cells.
    Burns TJ; Frei AP; Gherardini PF; Bava FA; Batchelder JE; Yoshiyasu Y; Yu JM; Groziak AR; Kimmey SC; Gonzalez VD; Fantl WJ; Nolan GP
    Cytometry A; 2017 Feb; 91(2):180-189. PubMed ID: 28094900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viability of amoebae, fungal conidia, and yeasts: rapid assessment by flow cytometry.
    Noble-Wang JA; Zhang S; Price D; Ahearn DG
    Methods Mol Biol; 2004; 268():153-61. PubMed ID: 15156027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file.
    Robinson JP; Durack G; Kelley S
    Cytometry; 1991; 12(1):82-90. PubMed ID: 1999125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single Cell Electrical Characterization Techniques.
    Mansor MA; Ahmad MR
    Int J Mol Sci; 2015 Jun; 16(6):12686-712. PubMed ID: 26053399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.
    Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH
    Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview of clinical flow cytometry data analysis: recent advances and future challenges.
    Pedreira CE; Costa ES; Lecrevisse Q; van Dongen JJ; Orfao A;
    Trends Biotechnol; 2013 Jul; 31(7):415-25. PubMed ID: 23746659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data.
    Fišer K; Sieger T; Schumich A; Wood B; Irving J; Mejstříková E; Dworzak MN
    Cytometry A; 2012 Jan; 81(1):25-34. PubMed ID: 21990127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single cell screening approaches for antibody discovery.
    Fitzgerald V; Leonard P
    Methods; 2017 Mar; 116():34-42. PubMed ID: 27864085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-parametric imaging of cell heterogeneity in apoptosis analysis.
    Vorobjev IA; Barteneva NS
    Methods; 2017 Jan; 112():105-123. PubMed ID: 27392934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development.
    Chen S; Weddell J; Gupta P; Conard G; Parkin J; Imoukhuede PI
    Methods Mol Biol; 2017; 1570():117-138. PubMed ID: 28238133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow Cytometric FRET Analysis of Protein Interactions.
    Ujlaky-Nagy L; Nagy P; Szöllősi J; Vereb G
    Methods Mol Biol; 2018; 1678():393-419. PubMed ID: 29071688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational platform for robotized fluorescence microscopy (I): high-content image-based cell-cycle analysis.
    Furia L; Pelicci PG; Faretta M
    Cytometry A; 2013 Apr; 83(4):333-43. PubMed ID: 23463605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fully-automated image processing software to analyze calcium traces in populations of single cells.
    Wong LC; Lu B; Tan KW; Fivaz M
    Cell Calcium; 2010 Nov; 48(5):270-4. PubMed ID: 20952058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.