BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

810 related articles for article (PubMed ID: 29082737)

  • 1. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.
    Xu X; Tang J; Qian H; Hou S; Bando Y; Hossain MSA; Pan L; Yamauchi Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38737-38744. PubMed ID: 29082737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyoxometalate-Based Metal-Organic Frameworks with Conductive Polypyrrole for Supercapacitors.
    Wang HN; Zhang M; Zhang AM; Shen FC; Wang XK; Sun SN; Chen YJ; Lan YQ
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32265-32270. PubMed ID: 30175579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI.
    Wang L; Feng X; Ren L; Piao Q; Zhong J; Wang Y; Li H; Chen Y; Wang B
    J Am Chem Soc; 2015 Apr; 137(15):4920-3. PubMed ID: 25864960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ball-in-cage nanocomposites of metal-organic frameworks and three-dimensional carbon networks: synthesis and capacitive performance.
    Deng X; Zhu S; Li J; Ma L; He F; Liu E; He C; Shi C; Li Q; Zhao N
    Nanoscale; 2017 May; 9(19):6478-6485. PubMed ID: 28466938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypyrrole decorated metal-organic frameworks for supercapacitor devices.
    Patterson N; Xiao B; Ignaszak A
    RSC Adv; 2020 May; 10(34):20162-20172. PubMed ID: 35520395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrinkled two-dimensional ultrathin Cu(ii)-porphyrin framework nanosheets hybridized with polypyrrole for flexible all-solid-state supercapacitors.
    Zhao W; Wang W; Peng J; Chen T; Jin B; Liu S; Huang W; Zhao Q
    Dalton Trans; 2019 Jul; 48(26):9631-9638. PubMed ID: 30869090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanofiber @ Conductive Metal-Organic Frameworks for High-Performance Flexible Supercapacitors.
    Zhou S; Kong X; Zheng B; Huo F; Strømme M; Xu C
    ACS Nano; 2019 Aug; 13(8):9578-9586. PubMed ID: 31294960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of three-dimensional composite textile electrodes by metal-organic framework, zinc oxide, graphene and polyaniline for all-solid-state supercapacitors.
    Liu YN; Jin LN; Wang HT; Kang XH; Bian SW
    J Colloid Interface Sci; 2018 Nov; 530():29-36. PubMed ID: 29960905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of ZIF-67 and polypyrrole on current collector knitted from carbon nanotube-wrapped polymer yarns as a high-performance electrode for flexible supercapacitors.
    Liang Y; Luo X; Hu Z; Yang L; Zhang Y; Zhu L; Zhu M
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):77-85. PubMed ID: 36368216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance electrode of ZIF-67 metal-organic framework (MOF) loaded laser-induced graphene (LIG) composite for all-solid-state supercapacitor.
    Wang W; Han S; Li N; Song Y; Chen L; Liu C; Zhang S; Wang Z
    Nanotechnology; 2023 May; 34(30):. PubMed ID: 37171102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor.
    Qi K; Hou R; Zaman S; Qiu Y; Xia BY; Duan H
    ACS Appl Mater Interfaces; 2018 May; 10(21):18021-18028. PubMed ID: 29749722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and biocompatibility of polypyrrole/Cu(II) metal-organic framework nanocomposites.
    Neisi Z; Ansari-Asl Z; Jafarinejad-Farsangi S; Tarzi ME; Sedaghat T; Nobakht V
    Colloids Surf B Biointerfaces; 2019 Jun; 178():365-376. PubMed ID: 30903975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Conductive Hybrid Electrode Materials Based on PPy@ZIF-67-Derived Oxyhydroxide@CFs Composites for Energy Storage.
    Yang S; An X; Qian X
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density.
    Cheng Q; Tao K; Han X; Yang Y; Yang Z; Ma Q; Han L
    Dalton Trans; 2019 Mar; 48(13):4119-4123. PubMed ID: 30855067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications.
    Wang T; Wang Y; Zhang D; Hu X; Zhang L; Zhao C; He YS; Zhang W; Yang N; Ma ZF
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17726-17735. PubMed ID: 33821614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implanting Polypyrrole in Metal-Porphyrin MOFs: Enhanced Electrocatalytic Performance for CO
    Xin Z; Liu J; Wang X; Shen K; Yuan Z; Chen Y; Lan YQ
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54959-54966. PubMed ID: 34766753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercapacitor with high cycling stability through electrochemical deposition of metal-organic frameworks/polypyrrole positive electrode.
    Liu Y; Xu N; Chen W; Wang X; Sun C; Su Z
    Dalton Trans; 2018 Oct; 47(38):13472-13478. PubMed ID: 30187075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors.
    Zhang A; Zhang H; Hu B; Wang M; Zhang S; Jia Q; He L; Zhang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1257-1267. PubMed ID: 34739989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.