These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow. Razavi M; Leigh Anderson N; Pope ME; Yip R; Pearson TW N Biotechnol; 2016 Sep; 33(5 Pt A):494-502. PubMed ID: 26772726 [TBL] [Abstract][Full Text] [Related]
4. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
5. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. Fu Q; Murray CI; Karpov OA; Van Eyk JE Mass Spectrom Rev; 2023 Mar; 42(2):873-886. PubMed ID: 34786750 [TBL] [Abstract][Full Text] [Related]
6. Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples. Marinova M; Artusi C; Brugnolo L; Antonelli G; Zaninotto M; Plebani M Clin Biochem; 2013 Nov; 46(16-17):1723-7. PubMed ID: 24012696 [TBL] [Abstract][Full Text] [Related]
7. A Plasma Sample Preparation for Mass Spectrometry using an Automated Workstation. Fu Q; Johnson CW; Wijayawardena BK; Kowalski MP; Kheradmand M; Van Eyk JE J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391810 [TBL] [Abstract][Full Text] [Related]
8. Automation of peptide desalting for proteomic liquid chromatography - tandem mass spectrometry by centrifugal microfluidics. Klatt JN; Dinh TJ; Schilling O; Zengerle R; Schmidt F; Hutzenlaub T; Paust N Lab Chip; 2021 Jun; 21(11):2255-2264. PubMed ID: 33908535 [TBL] [Abstract][Full Text] [Related]
9. A robotic protocol for high-throughput processing of samples for selected reaction monitoring assays. Zhu M; Zhang P; Geng-Spyropoulos M; Moaddel R; Semba RD; Ferrucci L Proteomics; 2017 Mar; 17(6):. PubMed ID: 27862927 [TBL] [Abstract][Full Text] [Related]
10. Cost-Effective Automated Preparation of Serum Samples for Reproducible Quantitative Clinical Proteomics. Lee J; Kim H; Sohn A; Yeo I; Kim Y J Proteome Res; 2019 May; 18(5):2337-2345. PubMed ID: 30985128 [TBL] [Abstract][Full Text] [Related]
11. Automated Sample Preparation Workflow for Tandem Mass Tag-Based Proteomics. Mun DG; Joshi NS; Budhraja R; Sachdeva GS; Kang T; Bhat FA; Ding H; Madden BJ; Zhong J; Pandey A J Am Soc Mass Spectrom; 2023 Oct; 34(10):2087-2092. PubMed ID: 37657774 [TBL] [Abstract][Full Text] [Related]
12. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics. Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140 [TBL] [Abstract][Full Text] [Related]
13. STAGE-diging: A novel in-gel digestion processing for proteomics samples. Soffientini P; Bachi A J Proteomics; 2016 May; 140():48-54. PubMed ID: 27060224 [TBL] [Abstract][Full Text] [Related]
14. Assessing Automated Sample Preparation Technologies for High-Throughput Proteomics of Frozen Well Characterized Tissues from Swedish Biobanks. Kuras M; Betancourt LH; Rezeli M; Rodriguez J; Szasz M; Zhou Q; Miliotis T; Andersson R; Marko-Varga G J Proteome Res; 2019 Jan; 18(1):548-556. PubMed ID: 30462917 [TBL] [Abstract][Full Text] [Related]
15. Reducing the cost of semi-automated in-gel tryptic digestion and GeLC sample preparation for high-throughput proteomics. Ruelcke JE; Loo D; Hill MM J Proteomics; 2016 Oct; 149():3-6. PubMed ID: 27084685 [TBL] [Abstract][Full Text] [Related]