These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29083313)

  • 1. Graphene enhanced field emission from InP nanocrystals.
    Iemmo L; Di Bartolomeo A; Giubileo F; Luongo G; Passacantando M; Niu G; Hatami F; Skibitzki O; Schroeder T
    Nanotechnology; 2017 Dec; 28(49):495705. PubMed ID: 29083313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field Emission from Self-Catalyzed GaAs Nanowires.
    Giubileo F; Di Bartolomeo A; Iemmo L; Luongo G; Passacantando M; Koivusalo E; Hakkarainen TV; Guina M
    Nanomaterials (Basel); 2017 Sep; 7(9):. PubMed ID: 28926948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.
    Niu G; Capellini G; Hatami F; Di Bartolomeo A; Niermann T; Hussein EH; Schubert MA; Krause HM; Zaumseil P; Skibitzki O; Lupina G; Masselink WT; Lehmann M; Xie YH; Schroeder T
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26948-26955. PubMed ID: 27642767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of field emission from GeSn nanoparticles epitaxially grown on silicon nanopillar arrays.
    Di Bartolomeo A; Passacantando M; Niu G; Schlykow V; Lupina G; Giubileo F; Schroeder T
    Nanotechnology; 2016 Dec; 27(48):485707. PubMed ID: 27804921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and Field Emission Properties of MoS₂ Bilayers.
    Urban F; Passacantando M; Giubileo F; Iemmo L; Di Bartolomeo A
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field emission from AlGaN nanowires with low turn-on field.
    Giubileo F; Bartolomeo AD; Zhong Y; Zhao S; Passacantando M
    Nanotechnology; 2020 Nov; 31(47):475702. PubMed ID: 32885788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field emission from a selected multiwall carbon nanotube.
    Passacantando M; Bussolotti F; Santucci S; Di Bartolomeo A; Giubileo F; Iemmo L; Cucolo AM
    Nanotechnology; 2008 Oct; 19(39):395701. PubMed ID: 21832602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field enhancement factor and field emission from a hemi-ellipsoidal metallic needle.
    Pogorelov EG; Zhbanov AI; Chang YC
    Ultramicroscopy; 2009 Mar; 109(4):373-8. PubMed ID: 19232831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field emission of individual carbon nanotubes in the scanning electron microscope.
    Bonard JM; Dean KA; Coll BF; Klinke C
    Phys Rev Lett; 2002 Nov; 89(19):197602. PubMed ID: 12443148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Emission from Zinc Oxide Nanobelts.
    Asthanal A; Yap YK; Shahbazian-Yassar R
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2277-82. PubMed ID: 26413652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.
    Kim HS; Heo JW; Chol SG; Ko DS; Rhee JK
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5148-50. PubMed ID: 26373094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.
    Xu J; Wang Q; Tao Z; Qi Z; Zhai Y; Wu S; Zhang X; Lei W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3295-300. PubMed ID: 26795930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.
    Basu T; Kumar M; Saini M; Ghatak J; Satpati B; Som T
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38931-38942. PubMed ID: 29019387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.
    Xi L; Cho DY; Besmehn A; Duchamp M; Grützmacher D; Lam YM; Kardynał BE
    Inorg Chem; 2016 Sep; 55(17):8381-6. PubMed ID: 27551948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube memory by the self-assembly of silicon nanocrystals as charge storage nodes.
    Olmedo M; Wang C; Ryu K; Zhou H; Ren J; Zhan N; Zhou C; Liu J
    ACS Nano; 2011 Oct; 5(10):7972-7. PubMed ID: 21902187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-plasma and high-temperature PECVD grown silicon-rich SiO(x) film with enhanced carrier tunneling and light emission.
    Lin GR; Lin CJ; Lin CT
    Nanotechnology; 2007 Oct; 18(39):395202. PubMed ID: 21730413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic and magnetoelectric properties of self-assembled Fe₂.₅Mn₀.₅O₄ nanocrystals.
    Kohiki S; Okada K; Mitome M; Kohno A; Kinoshita T; Iyama K; Tsunawaki F; Deguchi H
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3589-93. PubMed ID: 21870847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of electron emission site distribution of carbon nanofibers for field emission properties.
    Shimoi N; Tanaka S
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):768-73. PubMed ID: 23273149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of nano-EBIC to the characterization of GaAs and InP homojunctions.
    Smaali K; Troyon M
    Nanotechnology; 2008 Apr; 19(15):155706. PubMed ID: 21825630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.
    Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T
    J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.