These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 29083488)
1. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. Chen W; Zhu G; Tang J; Zhou HD; Li YP J Pathol; 2018 Mar; 244(3):271-282. PubMed ID: 29083488 [TBL] [Abstract][Full Text] [Related]
2. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. Chen W; Zhu G; Jules J; Nguyen D; Li YP J Bone Miner Res; 2018 Apr; 33(4):691-703. PubMed ID: 29149533 [TBL] [Abstract][Full Text] [Related]
3. C/EBPα regulates osteoclast lineage commitment. Chen W; Zhu G; Hao L; Wu M; Ci H; Li YP Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7294-9. PubMed ID: 23580622 [TBL] [Abstract][Full Text] [Related]
4. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity. Jules J; Chen W; Feng X; Li YP J Biol Chem; 2016 Jul; 291(31):16390-403. PubMed ID: 27129246 [TBL] [Abstract][Full Text] [Related]
5. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade. Xiao D; Zhou Q; Gao Y; Cao B; Zhang Q; Zeng G; Zong S J Cell Biochem; 2020 Nov; 121(11):4542-4557. PubMed ID: 32048762 [TBL] [Abstract][Full Text] [Related]
6. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription. Yang Y; Chung MR; Zhou S; Gong X; Xu H; Hong Y; Jin A; Huang X; Zou W; Dai Q; Jiang L J Biol Chem; 2019 Oct; 294(42):15395-15407. PubMed ID: 31462535 [TBL] [Abstract][Full Text] [Related]
7. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. Miyauchi Y; Ninomiya K; Miyamoto H; Sakamoto A; Iwasaki R; Hoshi H; Miyamoto K; Hao W; Yoshida S; Morioka H; Chiba K; Kato S; Tokuhisa T; Saitou M; Toyama Y; Suda T; Miyamoto T J Exp Med; 2010 Apr; 207(4):751-62. PubMed ID: 20368579 [TBL] [Abstract][Full Text] [Related]
8. Stimuli and Relevant Signaling Cascades for NFATc1 in Bone Cell Homeostasis: Friend or Foe? Zhang Z; Wen H; Yang X; Zhang K; He B; Zhang X; Kong L Curr Stem Cell Res Ther; 2019; 14(3):239-243. PubMed ID: 30516111 [TBL] [Abstract][Full Text] [Related]
9. The G9a histone methyltransferase represses osteoclastogenesis and bone resorption by regulating NFATc1 function. Komatsu K; Ideno H; Nakashima K; Udagawa N; Kobayashi Y; Kimura H; Tachibana M; Yamashita T; Nifuji A FASEB J; 2024 Jul; 38(13):e23779. PubMed ID: 38967255 [TBL] [Abstract][Full Text] [Related]
10. Ostm1 Bifunctional Roles in Osteoclast Maturation: Insights From a Mouse Model Mimicking a Human OSTM1 Mutation. Pata M; Vacher J J Bone Miner Res; 2018 May; 33(5):888-898. PubMed ID: 29297601 [TBL] [Abstract][Full Text] [Related]
11. Chaenomelis fructus inhibits osteoclast differentiation by suppressing NFATc1 expression and prevents ovariectomy-induced osteoporosis. Kim M; Kim HS; Kim JH; Kim EY; Lee B; Lee SY; Jun JY; Kim MB; Sohn Y; Jung HS BMC Complement Med Ther; 2020 Feb; 20(1):35. PubMed ID: 32024503 [TBL] [Abstract][Full Text] [Related]
12. Involvement of PU.1 in NFATc1 promoter function in osteoclast development. Ishiyama K; Yashiro T; Nakano N; Kasakura K; Miura R; Hara M; Kawai F; Maeda K; Tamura N; Okumura K; Ogawa H; Takasaki Y; Nishiyama C Allergol Int; 2015 Jul; 64(3):241-7. PubMed ID: 26117255 [TBL] [Abstract][Full Text] [Related]
13. LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. Liu C; Cao Z; Bai Y; Dou C; Gong X; Liang M; Dong R; Quan H; Li J; Dai J; Kang F; Zhao C; Dong S J Cell Physiol; 2019 Feb; 234(2):1606-1617. PubMed ID: 30132869 [TBL] [Abstract][Full Text] [Related]
14. AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. Pang M; Rodríguez-Gonzalez M; Hernandez M; Recinos CC; Seldeen KL; Troen BR J Cell Biochem; 2019 Aug; 120(8):12382-12392. PubMed ID: 30816596 [TBL] [Abstract][Full Text] [Related]
15. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Yang S; Li YP Genes Dev; 2007 Jul; 21(14):1803-16. PubMed ID: 17626792 [TBL] [Abstract][Full Text] [Related]
16. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Zhu G; Chen W; Tang CY; McVicar A; Edwards D; Wang J; McConnell M; Yang S; Li Y; Chang Z; Li YP Int J Biol Sci; 2022; 18(14):5522-5538. PubMed ID: 36147479 [TBL] [Abstract][Full Text] [Related]
17. ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Jeong BC; Kim JH; Kim K; Kim I; Seong S; Kim N Bone; 2017 Feb; 95():33-40. PubMed ID: 27829167 [TBL] [Abstract][Full Text] [Related]
18. PDK2 Deficiency Prevents Ovariectomy-Induced Bone Loss in Mice by Regulating the RANKL-NFATc1 Pathway During Osteoclastogenesis. Lee JM; Kim MJ; Lee SJ; Kim BG; Choi JY; Lee SM; Ham HJ; Koh JM; Jeon JH; Lee IK J Bone Miner Res; 2021 Mar; 36(3):553-566. PubMed ID: 33125772 [TBL] [Abstract][Full Text] [Related]
19. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253 [TBL] [Abstract][Full Text] [Related]
20. Major vault protein (MVP) negatively regulates osteoclastogenesis via calcineurin-NFATc1 pathway inhibition. Yuan L; Zhao N; Wang J; Liu Y; Meng L; Guo S; Wiemer EAC; Chen Q; Mao Y; Ben J; Ma J Theranostics; 2021; 11(15):7247-7261. PubMed ID: 34158848 [No Abstract] [Full Text] [Related] [Next] [New Search]