These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 29083531)
21. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of Zhu Y; Wang Q; Wang Y; Xu Y; Li J; Zhao S; Wang D; Ma Z; Yan F; Liu Y Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673678 [TBL] [Abstract][Full Text] [Related]
22. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening. Wang J; Dang Z; Zhang H; Zheng L; Borjigin T; Wang Y Mol Genet Genomics; 2016 Feb; 291(1):383-98. PubMed ID: 26388259 [TBL] [Abstract][Full Text] [Related]
23. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. Ma TL; Li WJ; Hong YS; Zhou YM; Tian L; Zhang XG; Liu FL; Liu P J Proteomics; 2022 Feb; 253():104457. PubMed ID: 34933133 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. Md-Mustafa ND; Khalid N; Gao H; Peng Z; Alimin MF; Bujang N; Ming WS; Mohd-Yusuf Y; Harikrishna JA; Othman RY BMC Genomics; 2014 Nov; 15(1):984. PubMed ID: 25407215 [TBL] [Abstract][Full Text] [Related]
25. Transcriptome Analysis Reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum From Different Locations. Lei Z; Zhou C; Ji X; Wei G; Huang Y; Yu W; Luo Y; Qiu Y Sci Rep; 2018 Apr; 8(1):6373. PubMed ID: 29686299 [TBL] [Abstract][Full Text] [Related]
26. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Lee J; Jung J; Son SH; Kim HB; Noh YH; Min SR; Park KH; Kim DS; Park SU; Lee HS; Kim CY; Kim HS; Lee HK; Kim H ScientificWorldJournal; 2018; 2018():6218430. PubMed ID: 29686587 [TBL] [Abstract][Full Text] [Related]
27. Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. Chen J; Tang X; Ren C; Wei B; Wu Y; Wu Q; Pei J BMC Genomics; 2018 Jul; 19(1):548. PubMed ID: 30041604 [TBL] [Abstract][Full Text] [Related]
28. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
29. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. Li H; Yao W; Fu Y; Li S; Guo Q PLoS One; 2015; 10(1):e111054. PubMed ID: 25559297 [TBL] [Abstract][Full Text] [Related]
30. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. Wang X; Hu H; Wu Z; Fan H; Wang G; Chai T; Wang H BMC Genomics; 2021 May; 22(1):353. PubMed ID: 34000984 [TBL] [Abstract][Full Text] [Related]
31. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Bains S; Thakur V; Kaur J; Singh K; Kaur R Genomics; 2019 Dec; 111(6):1474-1482. PubMed ID: 30343181 [TBL] [Abstract][Full Text] [Related]
32. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373 [TBL] [Abstract][Full Text] [Related]
33. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Guo X; Li Y; Li C; Luo H; Wang L; Qian J; Luo X; Xiang L; Song J; Sun C; Xu H; Yao H; Chen S Gene; 2013 Sep; 527(1):131-8. PubMed ID: 23756193 [TBL] [Abstract][Full Text] [Related]
34. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A. Yang M; You W; Wu S; Fan Z; Xu B; Zhu M; Li X; Xiao Y BMC Genomics; 2017 Mar; 18(1):245. PubMed ID: 28330463 [TBL] [Abstract][Full Text] [Related]
35. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. He X; Bai Y; Zhao Z; Wang X; Fang J; Huang L; Zeng M; Zhang Q; Zhang Y; Zheng X J Ethnopharmacol; 2016 Jul; 187():160-82. PubMed ID: 27085938 [TBL] [Abstract][Full Text] [Related]
36. [Transcriptome profiling of Saposhnikovia divaricata growing for different years and mining of key genes in active ingredient biosynthesis]. Kou PW; Liu CL; Xu YK; Li B; Song ZX; Zhang YS; Huang WJ; Tang ZS Zhongguo Zhong Yao Za Zhi; 2022 Sep; 47(17):4609-4617. PubMed ID: 36164866 [TBL] [Abstract][Full Text] [Related]
37. Comprehensive analysis of wintersweet flower reveals key structural genes involved in flavonoid biosynthetic pathway. Yang N; Zhao K; Li X; Zhao R; Aslam MZ; Yu L; Chen L Gene; 2018 Nov; 676():279-289. PubMed ID: 30121381 [TBL] [Abstract][Full Text] [Related]
38. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit. Liu Q; Sun Y; Chen J; Li P; Li C; Niu G; Jiang L BMC Genomics; 2016 Nov; 17(1):929. PubMed ID: 27852215 [TBL] [Abstract][Full Text] [Related]
39. Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation. Shi Q; Zhou L; Wang Y; Li K; Zheng B; Miao K PLoS One; 2015; 10(8):e0135038. PubMed ID: 26267644 [TBL] [Abstract][Full Text] [Related]
40. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L. Sun H; Li F; Xu Z; Sun M; Cong H; Qiao F; Zhong X PLoS One; 2017; 12(8):e0182243. PubMed ID: 28771546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]