BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 29083855)

  • 1. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing.
    Gallagher DN; Haber JE
    ACS Chem Biol; 2018 Feb; 13(2):397-405. PubMed ID: 29083855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating DNA Repair Pathways to Improve Precision Genome Engineering.
    Pawelczak KS; Gavande NS; VanderVere-Carozza PS; Turchi JJ
    ACS Chem Biol; 2018 Feb; 13(2):389-396. PubMed ID: 29210569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans.
    Xu S
    J Genet Genomics; 2015 Aug; 42(8):413-21. PubMed ID: 26336798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes.
    Cui Y; Dong H; Ma Y; Zhang D
    ACS Synth Biol; 2019 Oct; 8(10):2194-2202. PubMed ID: 31525995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications.
    Wegrzyn RD; Lee AH; Jenkins AL; Stoddard CD; Cheever AE
    ACS Chem Biol; 2018 Feb; 13(2):333-342. PubMed ID: 28992411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles.
    Lemos BR; Kaplan AC; Bae JE; Ferrazzoli AE; Kuo J; Anand RP; Waterman DP; Haber JE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2040-E2047. PubMed ID: 29440496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9.
    Gratz SJ; Harrison MM; Wildonger J; O'Connor-Giles KM
    Methods Mol Biol; 2015; 1311():335-48. PubMed ID: 25981484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein.
    Ma Y; Chen W; Zhang X; Yu L; Dong W; Pan S; Gao S; Huang X; Zhang L
    RNA Biol; 2016 Jul; 13(7):605-12. PubMed ID: 27163284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing.
    Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ
    Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.
    Jiang W; Marraffini LA
    Annu Rev Microbiol; 2015; 69():209-28. PubMed ID: 26209264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered DNA repair pathway engagement by engineered CRISPR-Cas9 nucleases.
    Chauhan VP; Sharp PA; Langer R
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2300605120. PubMed ID: 36881621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing.
    Stella S; Alcón P; Montoya G
    Nat Struct Mol Biol; 2017 Nov; 24(11):882-892. PubMed ID: 29035385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells.
    Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH
    Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR-Cas systems.
    Chen L; Gao H; Zhou B; Wang Y
    FEBS Open Bio; 2021 Jul; 11(7):1965-1980. PubMed ID: 33999508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.