These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29083865)

  • 1. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.
    Bellido EP; Bernasconi GD; Rossouw D; Butet J; Martin OJF; Botton GA
    ACS Nano; 2017 Nov; 11(11):11240-11249. PubMed ID: 29083865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-angle scattering from the Cantor surface fractal on the plane and the Koch snowflake.
    Cherny AY; Anitas EM; Osipov VA; Kuklin AI
    Phys Chem Chem Phys; 2017 Jan; 19(3):2261-2268. PubMed ID: 28054690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of bending on plasmonic modes in nanowires and planar structures.
    Bellido EP; Bicket IC; Botton GA
    Nanophotonics; 2022 Jan; 11(2):305-314. PubMed ID: 36533260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas.
    Simon T; Li X; Martin J; Khlopin D; Stéphan O; Kociak M; Gérard D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancements in fractal plasmonics: structures, optical properties, and applications.
    Wallace GQ; Lagugné-Labarthet F
    Analyst; 2018 Dec; 144(1):13-30. PubMed ID: 30403204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal nanoparticle plasmonics: the Cayley tree.
    Gottheim S; Zhang H; Govorov AO; Halas NJ
    ACS Nano; 2015 Mar; 9(3):3284-92. PubMed ID: 25727720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip.
    Chen B; Bruck R; Traviss D; Khokhar AZ; Reynolds S; Thomson DJ; Mashanovich GZ; Reed GT; Muskens OL
    Nano Lett; 2018 Jan; 18(1):610-617. PubMed ID: 29272140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet.
    Volpe G; Volpe G; Quidant R
    Opt Express; 2011 Feb; 19(4):3612-8. PubMed ID: 21369185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal nematic colloids.
    Hashemi SM; Jagodič U; Mozaffari MR; Ejtehadi MR; Muševič I; Ravnik M
    Nat Commun; 2017 Jan; 8():14026. PubMed ID: 28117325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of 3D Printer Accuracy in Producing Fractal Structure.
    Kikegawa K; Takamatsu K; Kawakami M; Furukawa H; Mayama H; Nonomura Y
    J Oleo Sci; 2017; 66(4):383-389. PubMed ID: 28381788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal.
    Zhu LH; Shao MR; Peng RW; Fan RH; Huang XR; Wang M
    Opt Express; 2013 May; 21 Suppl 3():A313-23. PubMed ID: 24104419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direction-resolved radiation from polarization-controlled surface plasmon modes on silver nanowire antennas.
    Jia Z; Wei H; Pan D; Xu H
    Nanoscale; 2016 Dec; 8(48):20118-20124. PubMed ID: 27898124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.
    Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J
    Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy.
    Flauraud V; Bernasconi GD; Butet J; Alexander DTL; Martin OJF; Brugger J
    ACS Nano; 2017 Apr; 11(4):3485-3495. PubMed ID: 28290663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating acoustic and plasmonic modes in gold nanostars.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron energy-loss spectroscopy of surface plasmon activity in wrinkled gold structures.
    Mousavi M SS; Bicket IC; Bellido EP; Soleymani L; Botton GA
    J Chem Phys; 2020 Dec; 153(22):224703. PubMed ID: 33317278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.