BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29083952)

  • 1. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.
    Zhou C; Zhang C; Tian D; Wang K; Huang M; Liu Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):91-98. PubMed ID: 29083952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy neural network model for monitoring A²/O process using on-line monitoring parameters.
    Hu K; Wan JQ; Ma YW; Wang Y; Huang MZ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(5):744-54. PubMed ID: 22416869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system.
    Chiu YC; Chiang CW; Lee TY
    Water Sci Technol; 2017 Oct; 76(7-8):1739-1753. PubMed ID: 28991790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of artificial intelligence models in water quality forecasting.
    Yeon IS; Kim JH; Jun KW
    Environ Technol; 2008 Jun; 29(6):625-31. PubMed ID: 18702288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast predicting neural fuzzy model for on-line estimation of nutrient dynamics in an anoxic/oxic process.
    Huang MZ; Wan JQ; Ma YW; Li WJ; Sun XF; Wan Y
    Bioresour Technol; 2010 Mar; 101(6):1642-51. PubMed ID: 19857962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of anoxic/oxic process for nitrogen and chemical oxygen demand removal using fuzzy neural networks.
    Huang M; Wan J; Ma Y
    Water Environ Res; 2009 Jul; 81(7):654-63. PubMed ID: 19691245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.
    Najafzadeh M; Ghaemi A
    Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of river ecosystem models for Flemish watercourses: case studies in the Zwalm river basin.
    Goethals P; Dedecker A; Raes N; Adriaenssens V; Gabriels W; De Pauw N
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(1):71-86. PubMed ID: 15952431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Evaluation of Urban Water Bodies for Pollution Abatement Based on Fuzzy Multicriteria Decision Approach.
    Hashim S; Yuebo X; Saifullah M; Nabi Jan R; Muhetaer A
    Biomed Res Int; 2015; 2015():327280. PubMed ID: 26516623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two hybrid data-driven models for modeling water-air temperature relationship in rivers.
    Zhu S; Hadzima-Nyarko M; Gao A; Wang F; Wu J; Wu S
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12622-12630. PubMed ID: 30895536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.
    Heddam S
    Environ Sci Pollut Res Int; 2014; 21(15):9212-27. PubMed ID: 24705953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.
    Tang J; Zou Y; Ash J; Zhang S; Liu F; Wang Y
    PLoS One; 2016; 11(2):e0147263. PubMed ID: 26829639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.
    Dzakpasu M; Scholz M; McCarthy V; Jordan S; Sani A
    Water Sci Technol; 2015; 71(1):22-30. PubMed ID: 25607665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.
    Wen X; Fang J; Diao M; Zhang C
    Environ Monit Assess; 2013 May; 185(5):4361-71. PubMed ID: 23001527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models.
    Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid evolutionary data driven model for river water quality early warning.
    Burchard-Levine A; Liu S; Vince F; Li M; Ostfeld A
    J Environ Manage; 2014 Oct; 143():8-16. PubMed ID: 24833523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia.
    Ocampo-Duque W; Osorio C; Piamba C; Schuhmacher M; Domingo JL
    Environ Int; 2013 Feb; 52():17-28. PubMed ID: 23266912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive neuro fuzzy inference system for classification of water quality status.
    Yan H; Zou Z; Wang H
    J Environ Sci (China); 2010; 22(12):1891-6. PubMed ID: 21462706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States.
    Olyaie E; Banejad H; Chau KW; Melesse AM
    Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.