BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29083981)

  • 21. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers.
    Yoo SK; Lee S; Kim SJ; Jee HG; Kim BA; Cho H; Song YS; Cho SW; Won JK; Shin JY; Park do J; Kim JI; Lee KE; Park YJ; Seo JS
    PLoS Genet; 2016 Aug; 12(8):e1006239. PubMed ID: 27494611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BRAF mutation testing of thyroid fine-needle aspiration specimens enhances the predictability of malignancy in thyroid follicular lesions of undetermined significance.
    Adeniran AJ; Hui P; Chhieng DC; Prasad ML; Schofield K; Theoharis C
    Acta Cytol; 2011; 55(6):570-5. PubMed ID: 22156468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Molecular mechanism of thyroid carcinogenesis].
    Yamashita S; Mitsutake N
    Nihon Rinsho; 2007 Nov; 65(11):1959-65. PubMed ID: 18018555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of miRNA in Papillary Thyroid Cancer in the Context of miRNA Let-7 Family.
    Perdas E; Stawski R; Nowak D; Zubrzycka M
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27314338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pediatric, Adolescent, and Young Adult Thyroid Carcinoma Harbors Frequent and Diverse Targetable Genomic Alterations, Including Kinase Fusions.
    Vanden Borre P; Schrock AB; Anderson PM; Morris JC; Heilmann AM; Holmes O; Wang K; Johnson A; Waguespack SG; Ou SI; Khan S; Fung KM; Stephens PJ; Erlich RL; Miller VA; Ross JS; Ali SM
    Oncologist; 2017 Mar; 22(3):255-263. PubMed ID: 28209747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role and relevance of BRAF mutations in risk stratifying patients of papillary thyroid cancers along with a review of literature.
    Krishnamurthy A; Ramshankar V; Murherkar K; Vidyarani S; Raghunandhan GC; Das A; Desai PB; Albert K
    Indian J Cancer; 2017; 54(1):372-378. PubMed ID: 29199726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Molecular Aspects of Thyroid Tumors with Emphasis on MicroRNA and Their Clinical Implications].
    Ludvíková M; Kholová I; Kalfeřt D
    Klin Onkol; 2017; 30(3):167-174. PubMed ID: 28612612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications.
    Tang KT; Lee CH
    J Chin Med Assoc; 2010 Mar; 73(3):113-28. PubMed ID: 20230995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [BRAF gene mutation in the natural history of papillary thyroid carcinoma: diagnostic and prognostic implications].
    Lopes JP; Fonseca E
    Acta Med Port; 2011 Dec; 24 Suppl 4():855-68. PubMed ID: 22863493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The epigenetic landscape of differentiated thyroid cancer.
    Asa SL; Ezzat S
    Mol Cell Endocrinol; 2018 Jul; 469():3-10. PubMed ID: 28711609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations.
    Quiros RM; Ding HG; Gattuso P; Prinz RA; Xu X
    Cancer; 2005 Jun; 103(11):2261-8. PubMed ID: 15880523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaplastic Transformation in Mandibular Metastases of Follicular Variant of Papillary Thyroid Carcinoma: A Case Report and Review of the Literature.
    Ambelil M; Sultana S; Roy S; Gonzalez MM
    Ann Clin Lab Sci; 2016 Sep; 46(5):552-6. PubMed ID: 27650625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene-expression profiling in differentiated thyroid cancer--a viable strategy for the practice of genomic medicine?
    Weber F; Eng C
    Future Oncol; 2005 Aug; 1(4):497-510. PubMed ID: 16556026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Concordant Key Genetic Alterations in Primary Tumors and Matched Distant Metastases in Differentiated Thyroid Cancer.
    Sohn SY; Park WY; Shin HT; Bae JS; Ki CS; Oh YL; Kim SW; Chung JH
    Thyroid; 2016 May; 26(5):672-82. PubMed ID: 26971368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Fetal cell carcinogenesis hypothesis and the prospect of future laboratory tests].
    Takano T
    Rinsho Byori; 2009 Aug; 57(8):761-8. PubMed ID: 19764411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Fusions in Thyroid Cancer.
    Yakushina VD; Lerner LV; Lavrov AV
    Thyroid; 2018 Feb; 28(2):158-167. PubMed ID: 29281951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes.
    Pagan M; Kloos RT; Lin CF; Travers KJ; Matsuzaki H; Tom EY; Kim SY; Wong MG; Stewart AC; Huang J; Walsh PS; Monroe RJ; Kennedy GC
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):6. PubMed ID: 26818556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Markers Involved in Tumorigenesis of Thyroid Carcinoma: Focus on Aggressive Histotypes.
    Penna GC; Vaisman F; Vaisman M; Sobrinho-Simões M; Soares P
    Cytogenet Genome Res; 2016; 150(3-4):194-207. PubMed ID: 28231576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression profile of human thyroid cancer in relation to its mutational status.
    Rusinek D; Szpak-Ulczok S; Jarzab B
    J Mol Endocrinol; 2011 Dec; 47(3):R91-103. PubMed ID: 21798995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shifting patterns of genomic variation in the somatic evolution of papillary thyroid carcinoma.
    Rubinstein JC; Brown TC; Christison-Lagay ER; Zhang Y; Kunstman JW; Juhlin CC; Nelson-Williams C; Goh G; Quinn CE; Callender GG; Udelsman R; Lifton RP; Korah R; Carling T
    BMC Cancer; 2016 Aug; 16():646. PubMed ID: 27538953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.