BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 29084141)

  • 41. High-performance liquid chromatography of biogenic amines in the corpus cardiacum of the American cockroach, Periplaneta americana.
    Shimizu T; Mihara M; Takeda N
    J Chromatogr; 1991 Feb; 539(1):193-7. PubMed ID: 2013612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera.
    Blenau W; Baumann A
    Arch Insect Biochem Physiol; 2001 Sep; 48(1):13-38. PubMed ID: 11519073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amino acid residues involved in interaction with tyramine in the Bombyx mori tyramine receptor.
    Ohta H; Utsumi T; Ozoe Y
    Insect Mol Biol; 2004 Oct; 13(5):531-8. PubMed ID: 15373809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular cloning and pharmacological characterization of a molluscan octopamine receptor.
    Gerhardt CC; Bakker RA; Piek GJ; Planta RJ; Vreugdenhil E; Leysen JE; Van Heerikhuizen H
    Mol Pharmacol; 1997 Feb; 51(2):293-300. PubMed ID: 9203635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust
    Schützler N; Girwert C; Hügli I; Mohana G; Roignant JY; Ryglewski S; Duch C
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3805-3810. PubMed ID: 30808766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians.
    Bauknecht P; Jékely G
    BMC Biol; 2017 Jan; 15(1):6. PubMed ID: 28137258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas.
    Ji P; Xu F; Huang B; Li Y; Li L; Zhang G
    PLoS One; 2016; 11(12):e0168574. PubMed ID: 27992549
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees.
    Scheiner R; Reim T; Søvik E; Entler BV; Barron AB; Thamm M
    J Exp Biol; 2017 Apr; 220(Pt 8):1443-1450. PubMed ID: 28167800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel octopamine receptor with preferential expression in Drosophila mushroom bodies.
    Han KA; Millar NS; Davis RL
    J Neurosci; 1998 May; 18(10):3650-8. PubMed ID: 9570796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of critical structural determinants responsible for octopamine binding to the alpha-adrenergic-like Bombyx mori octopamine receptor.
    Huang J; Hamasaki T; Ozoe F; Ohta H; Enomoto K; Kataoka H; Sawa Y; Hirota A; Ozoe Y
    Biochemistry; 2007 May; 46(20):5896-903. PubMed ID: 17469804
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils.
    Enan EE
    Insect Biochem Mol Biol; 2005 Apr; 35(4):309-21. PubMed ID: 15763467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pharmacological characterisation and functional roles for egg-laying of a β-adrenergic-like octopamine receptor in the brown planthopper Nilaparvata lugens.
    Wu SF; Jv XM; Li J; Xu GJ; Cai XY; Gao CF
    Insect Biochem Mol Biol; 2017 Aug; 87():55-64. PubMed ID: 28629966
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens).
    von Nickisch-Rosenegk E; Krieger J; Kubick S; Laage R; Strobel J; Strotmann J; Breer H
    Insect Biochem Mol Biol; 1996; 26(8-9):817-27. PubMed ID: 9014328
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells.
    Vanden Broeck J; Vulsteke V; Huybrechts R; De Loof A
    J Neurochem; 1995 Jun; 64(6):2387-95. PubMed ID: 7760020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine.
    Jezzini SH; Reyes-Colón D; Sosa MA
    PLoS One; 2014; 9(10):e111314. PubMed ID: 25350749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.
    Beggs KT; Tyndall JD; Mercer AR
    PLoS One; 2011; 6(11):e26809. PubMed ID: 22096499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of octopaminergic receptor genes in 4 nonneural tissues in female Nicrophorus vespilloides beetles.
    Cunningham CB; Douthit MK; Moore AJ
    Insect Sci; 2015 Aug; 22(4):495-502. PubMed ID: 24777774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.
    Troppmann B; Balfanz S; Baumann A; Blenau W
    Br J Pharmacol; 2010 Apr; 159(7):1450-62. PubMed ID: 20233210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The characterization of a concentration-sensitive α-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function.
    Huang J; Wu SF; Li XH; Adamo SA; Ye GY
    Brain Behav Immun; 2012 Aug; 26(6):942-50. PubMed ID: 22561607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression analysis of octopamine and tyramine receptors in Drosophila.
    El-Kholy S; Stephano F; Li Y; Bhandari A; Fink C; Roeder T
    Cell Tissue Res; 2015 Sep; 361(3):669-84. PubMed ID: 25743690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.