These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29084428)

  • 1. How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress.
    Zaki AM; Carbone P
    Langmuir; 2017 Nov; 33(46):13284-13294. PubMed ID: 29084428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous.
    Zaki AM; Carbone P
    Phys Chem Chem Phys; 2019 Jun; 21(25):13746-13757. PubMed ID: 31209450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers.
    Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N
    Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-induced flip-flop in biomembranes.
    Yaroslavov AA; Melik-Nubarov NS; Menger FM
    Acc Chem Res; 2006 Oct; 39(10):702-10. PubMed ID: 17042470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid composition determines interaction of liposome membranes with Pluronic L61.
    Zhirnov AE; Demina TV; Krylova OO; Grozdova ID; Melik-Nubarov NS
    Biochim Biophys Acta; 2005 Dec; 1720(1-2):73-83. PubMed ID: 16405999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations.
    Hezaveh S; Samanta S; De Nicola A; Milano G; Roccatano D
    J Phys Chem B; 2012 Dec; 116(49):14333-45. PubMed ID: 23137298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer.
    Bello G; Cavallini F; Dailey LA; Ehmoser EK
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183472. PubMed ID: 32941874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions.
    Houang EM; Bates FS; Sham YY; Metzger JM
    J Phys Chem B; 2017 Nov; 121(47):10657-10664. PubMed ID: 29049887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of hydrophilic pores in lipid bilayers.
    Leontiadou H; Mark AE; Marrink SJ
    Biophys J; 2004 Apr; 86(4):2156-64. PubMed ID: 15041656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties.
    Schwieger C; Achilles A; Scholz S; Rüger J; Bacia K; Saalwaechter K; Kressler J; Blume A
    Soft Matter; 2014 Sep; 10(33):6147-60. PubMed ID: 24942348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition.
    Olubummo A; Schulz M; Schöps R; Kressler J; Binder WH
    Langmuir; 2014 Jan; 30(1):259-67. PubMed ID: 24359326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers.
    Yang YL; Sheng YJ; Tsao HK
    J Colloid Interface Sci; 2019 May; 544():53-60. PubMed ID: 30826531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.
    Bennett WF; MacCallum JL; Tieleman DP
    J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments.
    Bennett WF; MacCallum JL; Hinner MJ; Marrink SJ; Tieleman DP
    J Am Chem Soc; 2009 Sep; 131(35):12714-20. PubMed ID: 19673519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floating and Diving Loops of ABA Triblock Copolymers in Lipid Bilayers and Stability Enhancement for Asymmetric Membranes.
    Chang HY; Tsai HC; Sheng YJ; Tsao HK
    Biomacromolecules; 2021 Feb; 22(2):494-503. PubMed ID: 33356177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid bilayer membranes.
    Werner M; Sommer JU
    Biomacromolecules; 2015 Jan; 16(1):125-35. PubMed ID: 25539014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Targets of the Hydrophobic Block of Pluronics in Cells: a Photo Affinity Labelling Approach.
    Zhirnov A; Nam E; Badun G; Romanyuk A; Ezhov A; Melik-Nubarov N; Grozdova I
    Pharm Res; 2018 Sep; 35(11):205. PubMed ID: 30191400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.