These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 29084428)
1. How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress. Zaki AM; Carbone P Langmuir; 2017 Nov; 33(46):13284-13294. PubMed ID: 29084428 [TBL] [Abstract][Full Text] [Related]
2. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous. Zaki AM; Carbone P Phys Chem Chem Phys; 2019 Jun; 21(25):13746-13757. PubMed ID: 31209450 [TBL] [Abstract][Full Text] [Related]
3. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981 [TBL] [Abstract][Full Text] [Related]
7. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. Hezaveh S; Samanta S; De Nicola A; Milano G; Roccatano D J Phys Chem B; 2012 Dec; 116(49):14333-45. PubMed ID: 23137298 [TBL] [Abstract][Full Text] [Related]
8. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers. Checkervarty A; Werner M; Sommer JU Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426 [TBL] [Abstract][Full Text] [Related]
9. Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer. Bello G; Cavallini F; Dailey LA; Ehmoser EK Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183472. PubMed ID: 32941874 [TBL] [Abstract][Full Text] [Related]
10. Unraveling the Phase Behavior, Mechanical Stability, and Protein Reconstitution Properties of Polymer-Lipid Hybrid Vesicles. Müller WA; Beales PA; Muniz AR; Jeuken LJC Biomacromolecules; 2023 Sep; 24(9):4156-4169. PubMed ID: 37539954 [TBL] [Abstract][Full Text] [Related]
11. All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions. Houang EM; Bates FS; Sham YY; Metzger JM J Phys Chem B; 2017 Nov; 121(47):10657-10664. PubMed ID: 29049887 [TBL] [Abstract][Full Text] [Related]
12. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. Schwieger C; Achilles A; Scholz S; Rüger J; Bacia K; Saalwaechter K; Kressler J; Blume A Soft Matter; 2014 Sep; 10(33):6147-60. PubMed ID: 24942348 [TBL] [Abstract][Full Text] [Related]
14. Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers. Yang YL; Sheng YJ; Tsao HK J Colloid Interface Sci; 2019 May; 544():53-60. PubMed ID: 30826531 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. Bennett WF; MacCallum JL; Tieleman DP J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400 [TBL] [Abstract][Full Text] [Related]
16. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. Bennett WF; MacCallum JL; Hinner MJ; Marrink SJ; Tieleman DP J Am Chem Soc; 2009 Sep; 131(35):12714-20. PubMed ID: 19673519 [TBL] [Abstract][Full Text] [Related]
17. Floating and Diving Loops of ABA Triblock Copolymers in Lipid Bilayers and Stability Enhancement for Asymmetric Membranes. Chang HY; Tsai HC; Sheng YJ; Tsao HK Biomacromolecules; 2021 Feb; 22(2):494-503. PubMed ID: 33356177 [TBL] [Abstract][Full Text] [Related]
18. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress. Lai K; Wang B; Zhang Y; Zheng Y Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312 [TBL] [Abstract][Full Text] [Related]
19. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid bilayer membranes. Werner M; Sommer JU Biomacromolecules; 2015 Jan; 16(1):125-35. PubMed ID: 25539014 [TBL] [Abstract][Full Text] [Related]
20. Molecular Targets of the Hydrophobic Block of Pluronics in Cells: a Photo Affinity Labelling Approach. Zhirnov A; Nam E; Badun G; Romanyuk A; Ezhov A; Melik-Nubarov N; Grozdova I Pharm Res; 2018 Sep; 35(11):205. PubMed ID: 30191400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]