These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29084541)

  • 1. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors.
    Gao J; Yuan W; Li Y; Bai F; Jiang Y
    Microb Cell Fact; 2017 Oct; 16(1):181. PubMed ID: 29084541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from
    Gao J; Feng H; Yuan W; Li Y; Hou S; Zhong S; Bai F
    Biotechnol Biofuels; 2017; 10():79. PubMed ID: 28360937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol.
    Wang X; Li BZ; Ding MZ; Zhang WW; Yuan YJ
    OMICS; 2013 Mar; 17(3):150-9. PubMed ID: 23421908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating cellular mechanisms of Saccharomyces cerevisiae tolerant to combined lignocellulosic-derived inhibitors using high-throughput phenotyping and multiomics analyses.
    Unrean P; Gätgens J; Klein B; Noack S; Champreda V
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30256930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data.
    Fu X; Li P; Zhang L; Li S
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2715-2729. PubMed ID: 30673809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and transcriptome analyses of Kluyveromyces marxianus reveal adaptive traits in stress response.
    Sandoval-Nuñez D; Romero-Gutiérrez T; Gómez-Márquez C; Gshaedler A; Arellano-Plaza M; Amaya-Delgado L
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1421-1438. PubMed ID: 36651929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.
    Wang X; Ma M; Liu ZL; Xiang Q; Li X; Liu N; Zhang X
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6671-6682. PubMed ID: 27003269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review].
    Li H; Zhang X; Shen Y; Dong Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin.
    Shen Y; Zhou X; Xu Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1072-1083. PubMed ID: 31960365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol production from Lignocellulosic biomass by a novel Kluyveromyces marxianus strain.
    Goshima T; Tsuji M; Inoue H; Yano S; Hoshino T; Matsushika A
    Biosci Biotechnol Biochem; 2013; 77(7):1505-10. PubMed ID: 23832346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thioredoxin system--from science to clinic.
    Gromer S; Urig S; Becker K
    Med Res Rev; 2004 Jan; 24(1):40-89. PubMed ID: 14595672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis.
    Tarrío N; Díaz Prado S; Cerdán ME; González Siso MI
    Biochim Biophys Acta; 2004 May; 1678(2-3):170-5. PubMed ID: 15157744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol.
    Huang J; Xu J; Tian L; Zhong L
    Biochimie; 2014 Feb; 97():92-103. PubMed ID: 24103200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains.
    Faga BA; Wilkins MR; Banat IM
    Bioresour Technol; 2010 Apr; 101(7):2273-9. PubMed ID: 19939673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.