BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29085048)

  • 1. DHPA-Containing Cobalt-Based Redox Metal-Organic Cyclohelicates as Enzymatic Molecular Flasks for Light-Driven H
    Zhao L; Wang J; Wu P; He C; Guo X; Duan C
    Sci Rep; 2017 Oct; 7(1):14347. PubMed ID: 29085048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction.
    Jing X; He C; Yang Y; Duan C
    J Am Chem Soc; 2015 Mar; 137(11):3967-74. PubMed ID: 25738748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-switched selective catalysis with NADH mimic functionalized metal-organic capsules.
    Wei J; Zhao L; Zhang Y; Zhou P; Liu G; Duan C
    Chem Commun (Camb); 2022 Dec; 59(1):71-74. PubMed ID: 36458976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions.
    McNamara WR; Han Z; Yin CJ; Brennessel WW; Holland PL; Eisenberg R
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15594-9. PubMed ID: 22691494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide as a photocatalyst.
    Kim J; Lee SH; Tieves F; Paul CE; Hollmann F; Park CB
    Sci Adv; 2019 Jul; 5(7):eaax0501. PubMed ID: 31334353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.
    Gueret R; Castillo CE; Rebarz M; Thomas F; Hargrove AA; Pécaut J; Sliwa M; Fortage J; Collomb MN
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):82-94. PubMed ID: 25997378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A water-soluble tin(IV) porphyrin as a bioinspired photosensitiser for light-driven proton-reduction.
    Manke AM; Geisel K; Fetzer A; Kurz P
    Phys Chem Chem Phys; 2014 Jun; 16(24):12029-42. PubMed ID: 24556846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis.
    Mengele AK; Weixler D; Amthor S; Eikmanns BJ; Seibold GM; Rau S
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202114842. PubMed ID: 34932847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cobalt mimochrome for photochemical hydrogen evolution from neutral water.
    Edwards EH; Le JM; Salamatian AA; Peluso NL; Leone L; Lombardi A; Bren KL
    J Inorg Biochem; 2022 May; 230():111753. PubMed ID: 35182844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Photo-Driven Hydrogenation Reaction of an NAD
    Ohtsu H; Saito T; Tsuge K
    Front Chem; 2019; 7():580. PubMed ID: 31482088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.
    Wei J; Feng Y; Zhou P; Liu Y; Xu J; Xiang R; Ding Y; Zhao C; Fan L; Hu C
    ChemSusChem; 2015 Aug; 8(16):2630-4. PubMed ID: 26130568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrazolate-based cobalt(II)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: elucidating the role of entatic states for biomimetic oxidation processes.
    Tonigold M; Lu Y; Mavrandonakis A; Puls A; Staudt R; Möllmer J; Sauer J; Volkmer D
    Chemistry; 2011 Jul; 17(31):8671-95. PubMed ID: 21688331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported Pt Enabled Proton-Driven NAD(P)
    Burnett JWH; Chen H; Li J; Li Y; Huang S; Shi J; McCue AJ; Howe RF; Minteer SD; Wang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20943-20952. PubMed ID: 35482431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD
    Henriques Pereira DP; Leethaus J; Beyazay T; do Nascimento Vieira A; Kleinermanns K; Tüysüz H; Martin WF; Preiner M
    FEBS J; 2022 Jun; 289(11):3148-3162. PubMed ID: 34923745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kagóme Cobalt(II)-Organic Layers as Robust Scaffolds for Highly Efficient Photocatalytic Oxygen Evolution.
    Xu J; Wang Z; Yu W; Sun D; Zhang Q; Tung CH; Wang W
    ChemSusChem; 2016 May; 9(10):1146-52. PubMed ID: 27098180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water.
    Jurss JW; Khnayzer RS; Panetier JA; El Roz KA; Nichols EM; Head-Gordon M; Long JR; Castellano FN; Chang CJ
    Chem Sci; 2015 Aug; 6(8):4954-4972. PubMed ID: 29142725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.