BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29085422)

  • 1. Evaluation of iron transport from ferrous glycinate liposomes using Caco-2 cell model.
    Baomiao D; Xiangzhou Y; Li L; Hualin Y
    Afr Health Sci; 2017 Sep; 17(3):933-941. PubMed ID: 29085422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and pH stability of ferrous glycinate liposomes.
    Ding B; Xia S; Hayat K; Zhang X
    J Agric Food Chem; 2009 Apr; 57(7):2938-44. PubMed ID: 19253959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of iron uptake from reduced iron powder and FeSO4 using the Caco-2 cell model: effects of ascorbic acid, phytic acid, and pH.
    He WL; Feng Y; Li XL; Yang XE
    J Agric Food Chem; 2008 Apr; 56(8):2637-42. PubMed ID: 18376840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ferrous sulfate and ferrous glycinate chelate for the treatment of iron deficiency anemia in gastrectomized patients.
    Mimura EC; Breganó JW; Dichi JB; Gregório EP; Dichi I
    Nutrition; 2008; 24(7-8):663-8. PubMed ID: 18499399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics absorption characteristics of ferrous glycinate in SD rats and its impact on the relevant transport protein.
    Zhuo Z; Fang S; Yue M; Zhang Y; Feng J
    Biol Trace Elem Res; 2014 May; 158(2):197-202. PubMed ID: 24615551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of iron-containing liposomes: their effect on soluble iron uptake by Caco-2 cells.
    Hermida LG; Roig A; Bregni C; Sabés-Xamaní M; Barnadas-Rodríguez R
    J Liposome Res; 2011 Sep; 21(3):203-12. PubMed ID: 20854064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of iron bis-glycinate chelate in water.
    Olivares M; Pizarro F
    Arch Latinoam Nutr; 2001 Mar; 51(1 Suppl 1):22-5. PubMed ID: 11688077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron Transport from Ferrous Bisglycinate and Ferrous Sulfate in DMT1-Knockout Human Intestinal Caco-2 Cells.
    Yu X; Chen L; Ding H; Zhao Y; Feng J
    Nutrients; 2019 Feb; 11(3):. PubMed ID: 30813537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liposomal delivery systems for encapsulation of ferrous sulfate: Preparation and characterization.
    Kosaraju SL; Tran C; Lawrence A
    J Liposome Res; 2006; 16(4):347-58. PubMed ID: 17162577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between ethylenediaminetetraacetic acid (EDTA) and iron absorption pathways, in the Caco-2 model.
    Kibangou IB; Bureau F; Allouche S; Arhan P; Bouglé D
    Food Chem Toxicol; 2008 Nov; 46(11):3414-6. PubMed ID: 18783730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbic Acid can Reverse the Inhibition of Phytic Acid, Sodium Oxalate and Sodium Silicate on Iron Absorption in Caco-2 cells.
    He W; Li X; Ding K; Li Y; Li W
    Int J Vitam Nutr Res; 2018 Feb; 88(1-2):65-72. PubMed ID: 31119995
    [No Abstract]   [Full Text] [Related]  

  • 12. Carotenoids, but not vitamin A, improve iron uptake and ferritin synthesis by Caco-2 cells from ferrous fumarate and NaFe-EDTA.
    García-Casal MN; Leets I
    J Food Sci; 2014 Apr; 79(4):H706-12. PubMed ID: 24665932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells.
    García-Casal MN; Leets I; Layrisse M
    J Nutr; 2000 Jan; 130(1):5-9. PubMed ID: 10613757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: studies using an in vitro digestion/Caco-2 cell model.
    Glahn RP; Wortley GM; South PK; Miller DD
    J Agric Food Chem; 2002 Jan; 50(2):390-5. PubMed ID: 11782213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells.
    Yeung CK; Glahn RP; Miller DD
    J Agric Food Chem; 2005 Jan; 53(1):132-6. PubMed ID: 15631519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of iron solubility and dialyzability of various iron fortificants and of iron-fortified milk products targeted for infants and toddlers.
    Kapsokefalou M; Alexandropoulou I; Komaitis M; Politis I
    Int J Food Sci Nutr; 2005 Jun; 56(4):293-302. PubMed ID: 16096139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4: Effects of ascorbic acid, pH, and a Fe(II) chelating agent.
    Zhu L; Glahn RP; Yeung CK; Miller DD
    J Agric Food Chem; 2006 Oct; 54(20):7924-8. PubMed ID: 17002471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model].
    Lei J; Zhang MQ; Huang CY; Bai L; He ZH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological evaluation of liposomal iron carriers.
    Battistelli M; Salucci S; Falcieri E
    Microsc Res Tech; 2018 Nov; 81(11):1295-1300. PubMed ID: 30295364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.