These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29085908)

  • 1. Functional Neuroplasticity in the Nucleus Tractus Solitarius and Increased Risk of Sudden Death in Mice with Acquired Temporal Lobe Epilepsy.
    Derera ID; Delisle BP; Smith BN
    eNeuro; 2017; 4(5):. PubMed ID: 29085908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered A-type potassium channel function in the nucleus tractus solitarii in acquired temporal lobe epilepsy.
    Derera ID; Smith KC; Smith BN
    J Neurophysiol; 2019 Jan; 121(1):177-187. PubMed ID: 30517061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii.
    Boychuk CR; Gyarmati P; Xu H; Smith BN
    J Neurophysiol; 2015 Aug; 114(2):999-1007. PubMed ID: 26084907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of synapses in the rat subnucleus centralis of the nucleus tractus solitarius.
    Babic T; Ambler J; Browning KN; Travagli RA
    J Neurophysiol; 2015 Jan; 113(2):466-74. PubMed ID: 25355962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS).
    Ragozzino FJ; Peterson BA; Karatsoreos IN; Peters JH
    J Physiol; 2023 May; 601(10):1881-1896. PubMed ID: 36975145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy.
    Raza M; Pal S; Rafiq A; DeLorenzo RJ
    Brain Res; 2001 Jun; 903(1-2):1-12. PubMed ID: 11382382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii.
    Hofmann GC; Gama de Barcellos Filho P; Khodadadi F; Ostrowski D; Kline DD; Hasser EM
    J Physiol; 2024 Mar; 602(6):1147-1174. PubMed ID: 38377124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term receptor trafficking in the dorsal vagal complex: an overview.
    Browning KN; Travagli RA
    Auton Neurosci; 2006 Jun; 126-127():2-8. PubMed ID: 16580267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of vagal brainstem circuits in the control of gastric function.
    Browning KN; Travagli RA
    Neurogastroenterol Motil; 2010 Nov; 22(11):1154-63. PubMed ID: 20804520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of intrinsic firing response gain in principal hippocampal neurons following pilocarpine-induced status epilepticus.
    Tamir I; Daninos M; Yaari Y
    Neuroscience; 2017 Aug; 357():325-337. PubMed ID: 28624573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release.
    Bailey CP; Maubach KA; Jones RS
    Neuroscience; 2004; 127(2):467-79. PubMed ID: 15262336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilocarpine-induced status epilepticus causes acute interneuron loss and hyper-excitatory propagation in rat insular cortex.
    Chen S; Fujita S; Koshikawa N; Kobayashi M
    Neuroscience; 2010 Mar; 166(1):341-53. PubMed ID: 20018232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered cardiac structure and function is related to seizure frequency in a rat model of chronic acquired temporal lobe epilepsy.
    Powell KL; Liu Z; Curl CL; Raaijmakers AJA; Sharma P; Braine EL; Gomes FM; Sivathamboo S; Macefield VG; Casillas-Espinosa PM; Jones NC; Delbridge LM; O'Brien TJ
    Neurobiol Dis; 2021 Nov; 159():105505. PubMed ID: 34520843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS.
    Mimee A; Kuksis M; Ferguson AV
    Neuroscience; 2014 Mar; 262():70-82. PubMed ID: 24370637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential mechanisms of sudden unexpected death in epilepsy.
    Tolstykh GP; Cavazos JE
    Epilepsy Behav; 2013 Mar; 26(3):410-4. PubMed ID: 23305781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and functional changes in glucokinase expression in the brainstem dorsal vagal complex in a murine model of type 1 diabetes.
    Halmos KC; Gyarmati P; Xu H; Maimaiti S; Jancsó G; Benedek G; Smith BN
    Neuroscience; 2015 Oct; 306():115-22. PubMed ID: 26297899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDAR-independent hippocampal long-term depression impairment after status epilepticus in a lithium-pilocarpine model of temporal lobe epilepsy.
    Ivanov AD; Zaitsev AV
    Synapse; 2017 Aug; 71(8):. PubMed ID: 28432779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory Neurons in Nucleus Tractus Solitarius Are Involved in Decrease of Heart Rate Variability and Development of Depression-Like Behaviors in Temporal Lobe Epilepsy.
    Aimaier G; Qian K; Cao H; Peng W; Zhang Z; Ma J; Ding J; Wang X
    Int J Neuropsychopharmacol; 2023 Oct; 26(10):669-679. PubMed ID: 37417335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats.
    Vianna EP; Ferreira AT; Doná F; Cavalheiro EA; da Silva Fernandes MJ
    Epilepsia; 2005; 46 Suppl 5():166-73. PubMed ID: 15987273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.