These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 29085937)
1. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Kumar J; Nemade HB; Giri PK Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937 [TBL] [Abstract][Full Text] [Related]
2. Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons. Zou F; Zhu L; Yao K Sci Rep; 2015 Oct; 5():15966. PubMed ID: 26514646 [TBL] [Abstract][Full Text] [Related]
3. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics. Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495 [TBL] [Abstract][Full Text] [Related]
4. Negative differential resistance devices by using N-doped graphene nanoribbons. Huang J; Wang W; Li Q; Yang J J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295 [TBL] [Abstract][Full Text] [Related]
5. Strain modulation on the spin transport properties of PTB junctions with MoC Sun Y; Zhang B; Zhang S; Zhang D; Dong J; Long M Phys Chem Chem Phys; 2022 Feb; 24(6):3875-3885. PubMed ID: 35088774 [TBL] [Abstract][Full Text] [Related]
6. The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis. Bhattacharya B; Mondal R; Sarkar U J Mol Model; 2018 Sep; 24(10):278. PubMed ID: 30209667 [TBL] [Abstract][Full Text] [Related]
7. Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. Huang J; Xu K; Lei S; Su H; Yang S; Li Q; Yang J J Chem Phys; 2012 Feb; 136(6):064707. PubMed ID: 22360215 [TBL] [Abstract][Full Text] [Related]
8. Spin-thermoelectric properties and giant tunneling magnetoresistance of boron-substituted graphene nanoribbon: a first principle study. Sarkar S; Misra A J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35688140 [TBL] [Abstract][Full Text] [Related]
9. Spin transport properties in lower n-acene-graphene nanojunctions. Zou D; Cui B; Kong X; Zhao W; Zhao J; Liu D Phys Chem Chem Phys; 2015 May; 17(17):11292-300. PubMed ID: 25835485 [TBL] [Abstract][Full Text] [Related]
10. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics. Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289 [TBL] [Abstract][Full Text] [Related]
11. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon. Tawfik SA; Cui XY; Ringer SP; Stampfl C Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042 [TBL] [Abstract][Full Text] [Related]
12. Perfect Spin Filter in a Tailored Zigzag Graphene Nanoribbon. Kang D; Wang B; Xia C; Li H Nanoscale Res Lett; 2017 Dec; 12(1):357. PubMed ID: 28525951 [TBL] [Abstract][Full Text] [Related]
13. Electronic and Spintronic Properties of Armchair MoSi Su XQ; Wang XF Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839044 [TBL] [Abstract][Full Text] [Related]
14. Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study. Chen T; Guo C; Xu L; Li Q; Luo K; Liu D; Wang L; Long M Phys Chem Chem Phys; 2018 Feb; 20(8):5726-5733. PubMed ID: 29411795 [TBL] [Abstract][Full Text] [Related]
15. Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices. Wan H; Xiao X; Ang YS Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010006 [TBL] [Abstract][Full Text] [Related]
16. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron. Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083 [TBL] [Abstract][Full Text] [Related]
17. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons. Zhu L; Li R; Yao K Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668 [TBL] [Abstract][Full Text] [Related]
18. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons. Liu QB; Wu DD; Fu HH Phys Chem Chem Phys; 2017 Oct; 19(39):27132-27139. PubMed ID: 28967009 [TBL] [Abstract][Full Text] [Related]
19. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Li XF; Lian KY; Qiu Q; Luo Y Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635 [TBL] [Abstract][Full Text] [Related]
20. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons. Yang XF; Zhou WQ; Hong XK; Liu YS; Wang XF; Feng JF J Chem Phys; 2015 Jan; 142(2):024706. PubMed ID: 25591376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]