These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 29086081)
1. Automated Radiology Report Summarization Using an Open-Source Natural Language Processing Pipeline. Goff DJ; Loehfelm TW J Digit Imaging; 2018 Apr; 31(2):185-192. PubMed ID: 29086081 [TBL] [Abstract][Full Text] [Related]
2. Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm. Bozkurt S; Alkim E; Banerjee I; Rubin DL J Digit Imaging; 2019 Aug; 32(4):544-553. PubMed ID: 31222557 [TBL] [Abstract][Full Text] [Related]
3. Can independent coronal multiplanar reformatted images obtained using state-of-the-art MDCT scanners be used for primary interpretation of MDCT of the abdomen and pelvis? A feasibility study. Sebastian S; Kalra MK; Mittal P; Saini S; Small WC Eur J Radiol; 2007 Dec; 64(3):439-46. PubMed ID: 17408899 [TBL] [Abstract][Full Text] [Related]
4. A natural language processing pipeline for pairing measurements uniquely across free-text CT reports. Sevenster M; Bozeman J; Cowhy A; Trost W J Biomed Inform; 2015 Feb; 53():36-48. PubMed ID: 25200472 [TBL] [Abstract][Full Text] [Related]
6. A text processing pipeline to extract recommendations from radiology reports. Yetisgen-Yildiz M; Gunn ML; Xia F; Payne TH J Biomed Inform; 2013 Apr; 46(2):354-62. PubMed ID: 23354284 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the accuracy of lung-RADS score extraction from radiology reports: Manual entry versus natural language processing. Gandomi A; Hasan E; Chusid J; Paul S; Inra M; Makhnevich A; Raoof S; Silvestri G; Bade BC; Cohen SL Int J Med Inform; 2024 Nov; 191():105580. PubMed ID: 39096594 [TBL] [Abstract][Full Text] [Related]
8. An open-source fine-tuned large language model for radiological impression generation: a multi-reader performance study. Serapio A; Chaudhari G; Savage C; Lee YJ; Vella M; Sridhar S; Schroeder JL; Liu J; Yala A; Sohn JH BMC Med Imaging; 2024 Sep; 24(1):254. PubMed ID: 39333958 [TBL] [Abstract][Full Text] [Related]
9. Between Always and Never: Evaluating Uncertainty in Radiology Reports Using Natural Language Processing. Callen AL; Dupont SM; Price A; Laguna B; McCoy D; Do B; Talbott J; Kohli M; Narvid J J Digit Imaging; 2020 Oct; 33(5):1194-1201. PubMed ID: 32813098 [TBL] [Abstract][Full Text] [Related]
10. Multi-label annotation of text reports from computed tomography of the chest, abdomen, and pelvis using deep learning. D'Anniballe VM; Tushar FI; Faryna K; Han S; Mazurowski MA; Rubin GD; Lo JY BMC Med Inform Decis Mak; 2022 Apr; 22(1):102. PubMed ID: 35428335 [TBL] [Abstract][Full Text] [Related]
11. Automatically pairing measured findings across narrative abdomen CT reports. Sevenster M; Bozeman J; Cowhy A; Trost W AMIA Annu Symp Proc; 2013; 2013():1262-71. PubMed ID: 24551406 [TBL] [Abstract][Full Text] [Related]
12. Detecting Evidence of Intra-abdominal Surgical Site Infections from Radiology Reports Using Natural Language Processing. Chapman AB; Mowery DL; Swords DS; Chapman WW; Bucher BT AMIA Annu Symp Proc; 2017; 2017():515-524. PubMed ID: 29854116 [TBL] [Abstract][Full Text] [Related]
13. Extraction of radiographic findings from unstructured thoracoabdominal computed tomography reports using convolutional neural network based natural language processing. Pandey M; Xu Z; Sholle E; Maliakal G; Singh G; Fatima Z; Larine D; Lee BC; Wang J; van Rosendael AR; Baskaran L; Shaw LJ; Min JK; Al'Aref SJ PLoS One; 2020; 15(7):e0236827. PubMed ID: 32730362 [TBL] [Abstract][Full Text] [Related]
14. Automated Radiology-Pathology Module Correlation Using a Novel Report Matching Algorithm by Organ System. Dane B; Doshi A; Gfytopoulos S; Bhattacharji P; Recht M; Moore W Acad Radiol; 2018 May; 25(5):673-680. PubMed ID: 29373209 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of large language models performance against humans for summarizing MRI knee radiology reports: A feasibility study. López-Úbeda P; Martín-Noguerol T; Díaz-Angulo C; Luna A Int J Med Inform; 2024 Jul; 187():105443. PubMed ID: 38615509 [TBL] [Abstract][Full Text] [Related]
16. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports. Chen PH; Zafar H; Galperin-Aizenberg M; Cook T J Digit Imaging; 2018 Apr; 31(2):178-184. PubMed ID: 29079959 [TBL] [Abstract][Full Text] [Related]
17. Natural language processing to identify ureteric stones in radiology reports. Li AY; Elliot N J Med Imaging Radiat Oncol; 2019 Jun; 63(3):307-310. PubMed ID: 30720244 [TBL] [Abstract][Full Text] [Related]
18. Investigating the impact of structured reporting on the linguistic standardization of radiology reports through natural language processing over a 10-year period. Vosshenrich J; Nesic I; Boll DT; Heye T Eur Radiol; 2023 Nov; 33(11):7496-7506. PubMed ID: 37542652 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of Natural Language Processing-Assisted Auditing of Critical Findings in Chest Radiology. Heilbrun ME; Chapman BE; Narasimhan E; Patel N; Mowery D J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1299-1304. PubMed ID: 31229439 [TBL] [Abstract][Full Text] [Related]
20. Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed on Free-Text Radiology Reports From Patients With Glioblastoma. Senders JT; Cho LD; Calvachi P; McNulty JJ; Ashby JL; Schulte IS; Almekkawi AK; Mehrtash A; Gormley WB; Smith TR; Broekman MLD; Arnaout O JCO Clin Cancer Inform; 2020 Jan; 4():25-34. PubMed ID: 31977252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]