These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 29086090)
1. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. Koutsoukas A; Monaghan KJ; Li X; Huan J J Cheminform; 2017 Jun; 9(1):42. PubMed ID: 29086090 [TBL] [Abstract][Full Text] [Related]
2. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. Lenselink EB; Ten Dijke N; Bongers B; Papadatos G; van Vlijmen HWT; Kowalczyk W; IJzerman AP; van Westen GJP J Cheminform; 2017 Aug; 9(1):45. PubMed ID: 29086168 [TBL] [Abstract][Full Text] [Related]
3. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Jiang X; Xu C J Clin Med; 2022 Sep; 11(19):. PubMed ID: 36233640 [TBL] [Abstract][Full Text] [Related]
5. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
6. CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter. Abdelminaam DS; Ismail FH; Taha M; Taha A; Houssein EH; Nabil A IEEE Access; 2021; 9():27840-27867. PubMed ID: 34786308 [TBL] [Abstract][Full Text] [Related]
7. Predicting Breast Cancer Based on Optimized Deep Learning Approach. Saleh H; Abd-El Ghany SF; Alyami H; Alosaimi W Comput Intell Neurosci; 2022; 2022():1820777. PubMed ID: 35345799 [TBL] [Abstract][Full Text] [Related]
8. A review on machine learning approaches and trends in drug discovery. Carracedo-Reboredo P; Liñares-Blanco J; Rodríguez-Fernández N; Cedrón F; Novoa FJ; Carballal A; Maojo V; Pazos A; Fernandez-Lozano C Comput Struct Biotechnol J; 2021; 19():4538-4558. PubMed ID: 34471498 [TBL] [Abstract][Full Text] [Related]
9. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery. Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717 [TBL] [Abstract][Full Text] [Related]
10. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU. Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652 [TBL] [Abstract][Full Text] [Related]
11. Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets. Cortes-Ciriano I; Bender A; Malliavin TE J Chem Inf Model; 2015 Jul; 55(7):1413-25. PubMed ID: 26038978 [TBL] [Abstract][Full Text] [Related]
12. Improving robustness of a deep learning-based lung-nodule classification model of CT images with respect to image noise. Gao Y; Xiong J; Shen C; Jia X Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34818638 [No Abstract] [Full Text] [Related]
13. Deep neural mapping support vector machines. Li Y; Zhang T Neural Netw; 2017 Sep; 93():185-194. PubMed ID: 28646763 [TBL] [Abstract][Full Text] [Related]
14. Detection of Depression Severity Using Bengali Social Media Posts on Mental Health: Study Using Natural Language Processing Techniques. Kabir MK; Islam M; Kabir ANB; Haque A; Rhaman MK JMIR Form Res; 2022 Sep; 6(9):e36118. PubMed ID: 36169989 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Compound Profiling Matrices, Part II: Relative Performance of Multitask Deep Learning and Random Forest Classification on the Basis of Varying Amounts of Training Data. Rodríguez-Pérez R; Bajorath J ACS Omega; 2018 Sep; 3(9):12033-12040. PubMed ID: 30320286 [TBL] [Abstract][Full Text] [Related]
16. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity. Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the performance of various machine learning methods on the discrimination of the active compounds. Shamsara J Chem Biol Drug Des; 2021 Apr; 97(4):930-943. PubMed ID: 33370504 [TBL] [Abstract][Full Text] [Related]
19. Application of Machine Learning Approaches for the Design and Study of Anticancer Drugs. Hu Y; Lu Y; Wang S; Zhang M; Qu X; Niu B Curr Drug Targets; 2019; 20(5):488-500. PubMed ID: 30091413 [TBL] [Abstract][Full Text] [Related]