BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29086155)

  • 1. Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear Implant Users: Effects of Stimulation Mode.
    Zhou N; Dong L; Hang M
    J Assoc Res Otolaryngol; 2018 Feb; 19(1):99-111. PubMed ID: 29086155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection.
    Zhou N; Dong L
    Trends Hear; 2017 Jan; 21():2331216517690108. PubMed ID: 28150534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to spatial selectivity.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2016 Sep; 140(3):1537. PubMed ID: 27914377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse-rate discrimination deficit in cochlear implant users: is the upper limit of pitch peripheral or central?
    Zhou N; Mathews J; Dong L
    Hear Res; 2019 Jan; 371():1-10. PubMed ID: 30423498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition.
    Zhou N
    PLoS One; 2016; 11(10):e0165476. PubMed ID: 27798658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning.
    Zhou N; Cadmus M; Dong L; Mathews J
    J Assoc Res Otolaryngol; 2018 Jun; 19(3):317-330. PubMed ID: 29696448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding.
    Long CJ; Holden TA; McClelland GH; Parkinson WS; Shelton C; Kelsall DC; Smith ZM
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):293-304. PubMed ID: 24477546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to forward-masking recovery.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2016 Mar; 139(3):EL70-5. PubMed ID: 27036290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses.
    Pfingst BE; Franck KH; Xu L; Bauer EM; Zwolan TA
    J Assoc Res Otolaryngol; 2001 Jun; 2(2):87-103. PubMed ID: 11550528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the dual-peak excitation pattern produced by bipolar stimulation of a cochlear implant: effects on speech intelligibility.
    Mesnildrey Q; Macherey O
    Hear Res; 2015 Jan; 319():32-47. PubMed ID: 25449010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location.
    Chatterjee M; Kulkarni AM
    J Acoust Soc Am; 2017 May; 141(5):3190. PubMed ID: 28682084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Pulse Trains in Humans and Guinea Pigs with Cochlear Implants.
    Zhou N; Kraft CT; Colesa DJ; Pfingst BE
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):523-34. PubMed ID: 25990549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient performance with the Cochlear Corporation "20 + 2" implant: bipolar versus monopolar activation.
    Zwolan TA; Kileny PR; Ashbaugh C; Telian SA
    Am J Otol; 1996 Sep; 17(5):717-23. PubMed ID: 8892567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants.
    Pfingst BE; Zwolan TA; Holloway LA
    Hear Res; 1997 Oct; 112(1-2):247-60. PubMed ID: 9367245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.
    Mens LH; Berenstein CK
    Otol Neurotol; 2005 Sep; 26(5):957-64. PubMed ID: 16151343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the effect of spread of excitation in cochlear implants.
    Bingabr M; Espinoza-Varas B; Loizou PC
    Hear Res; 2008 Jul; 241(1-2):73-9. PubMed ID: 18556160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pure-Tone Masking Patterns for Monopolar and Phantom Electrical Stimulation in Cochlear Implants.
    Saoji AA; Koka K; Litvak LM; Finley CC
    Ear Hear; 2018; 39(1):124-130. PubMed ID: 28700446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional responses from guinea pigs with cochlear implants. I. Electrophysiological and psychophysical measures.
    Miller CA; Woodruff KE; Pfingst BE
    Hear Res; 1995 Dec; 92(1-2):85-99. PubMed ID: 8647749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychophysical recovery from pulse-train forward masking in electric hearing.
    Nelson DA; Donaldson GS
    J Acoust Soc Am; 2002 Dec; 112(6):2932-47. PubMed ID: 12509014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of stimulus level on speech perception with cochlear prostheses.
    Franck KH; Xu L; Pfingst BE
    J Assoc Res Otolaryngol; 2003 Mar; 4(1):49-59. PubMed ID: 12118364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.