BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29086164)

  • 1. Point mutation Arg153-His at surface of Bacillus lipase contributing towards increased thermostability and ester synthesis: insight into molecular network.
    Chopra N; Kaur J
    Mol Cell Biochem; 2018 Jun; 443(1-2):159-168. PubMed ID: 29086164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional insights into thermostable and organic solvent stable variant Pro247-Ser of Bacillus lipase.
    Chopra N; Kumar A; Kaur J
    Int J Biol Macromol; 2018 Mar; 108():845-852. PubMed ID: 29101046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface.
    Khurana J; Singh R; Kaur J
    Mol Biol Rep; 2011 Jun; 38(5):2919-26. PubMed ID: 20127521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.
    Kumar R; Singh R; Kaur J
    Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.
    Goomber S; Kumar R; Singh R; Mishra N; Kaur J
    Int J Biol Macromol; 2016 Jul; 88():507-14. PubMed ID: 27083848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 7. Engineering lipases for temperature adaptation: Structure function correlation.
    Kumar R; Goomber S; Kaur J
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140261. PubMed ID: 31401312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization, stability and esterification studies of a lipase from a Bacillus sp.
    Dosanjh NS; Kaur J
    Biotechnol Appl Biochem; 2002 Aug; 36(1):7-12. PubMed ID: 12149117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.
    Kumar S; Pahujani S; Ola RP; Kanwar SS; Gupta R
    Acta Microbiol Immunol Hung; 2006 Jun; 53(2):219-31. PubMed ID: 16956131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a thermostable variant of Lip2 lipase from Yarrowia lipolytica by directed evolution and deeper insight into the denaturation mechanisms involved.
    Bordes F; Tarquis L; Nicaud JM; Marty A
    J Biotechnol; 2011 Nov; 156(2):117-24. PubMed ID: 21763359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of N terminus long range non covalent interactions shifted temp.opt 25°C to cold: Evolution of point mutant Bacillus lipase by error prone PCR.
    Goomber S; Kumar A; Kaur J
    Gene; 2016 Jan; 576(1 Pt 2):237-43. PubMed ID: 26456196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity.
    Hild E; Brumbley SM; O'Shea MG; Nevalainen H; Bergquist PL
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1071-8. PubMed ID: 17426967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation.
    Khan MF; Kundu D; Hazra C; Patra S
    Int J Biol Macromol; 2019 Sep; 136():66-82. PubMed ID: 31181278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution.
    Akbulut N; Tuzlakoğlu Öztürk M; Pijning T; İşsever Öztürk S; Gümüşel F
    J Biotechnol; 2013 Mar; 164(1):123-9. PubMed ID: 23313890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501.
    Yamada C; Sawano K; Iwase N; Matsuoka M; Arakawa T; Nishida S; Fushinobu S
    J Gen Appl Microbiol; 2017 Jan; 62(6):313-319. PubMed ID: 27885194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the roles of two tryptophans surrounding the unique zinc coordination site in lipase family I.5.
    Timucin E; Cousido-Siah A; Mitschler A; Podjarny A; Sezerman OU
    Proteins; 2016 Jan; 84(1):129-42. PubMed ID: 26573720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.