These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 29086168)
1. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. Lenselink EB; Ten Dijke N; Bongers B; Papadatos G; van Vlijmen HWT; Kowalczyk W; IJzerman AP; van Westen GJP J Cheminform; 2017 Aug; 9(1):45. PubMed ID: 29086168 [TBL] [Abstract][Full Text] [Related]
2. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. Koutsoukas A; Monaghan KJ; Li X; Huan J J Cheminform; 2017 Jun; 9(1):42. PubMed ID: 29086090 [TBL] [Abstract][Full Text] [Related]
3. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery. Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717 [TBL] [Abstract][Full Text] [Related]
4. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions. Rodríguez-Pérez R; Bajorath J J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity. Playe B; Stoven V J Cheminform; 2020 Feb; 12(1):11. PubMed ID: 33431042 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the performance of various machine learning methods on the discrimination of the active compounds. Shamsara J Chem Biol Drug Des; 2021 Apr; 97(4):930-943. PubMed ID: 33370504 [TBL] [Abstract][Full Text] [Related]
8. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers. Passafaro TL; Lopes FB; Dórea JRR; Craven M; Breen V; Hawken RJ; Rosa GJM BMC Genomics; 2020 Nov; 21(1):771. PubMed ID: 33167865 [TBL] [Abstract][Full Text] [Related]
9. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products. Cockroft NT; Cheng X; Fuchs JR J Chem Inf Model; 2019 Nov; 59(11):4906-4920. PubMed ID: 31589422 [TBL] [Abstract][Full Text] [Related]
10. A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery. Watson OP; Cortes-Ciriano I; Taylor AR; Watson JA Bioinformatics; 2019 Nov; 35(22):4656-4663. PubMed ID: 31070704 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
12. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships. Xu Y; Ma J; Liaw A; Sheridan RP; Svetnik V J Chem Inf Model; 2017 Oct; 57(10):2490-2504. PubMed ID: 28872869 [TBL] [Abstract][Full Text] [Related]
13. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules. Paricharak S; Cortés-Ciriano I; IJzerman AP; Malliavin TE; Bender A J Cheminform; 2015; 7():15. PubMed ID: 25926892 [TBL] [Abstract][Full Text] [Related]
14. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques. Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881 [TBL] [Abstract][Full Text] [Related]
15. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity. Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883 [TBL] [Abstract][Full Text] [Related]
16. Open-source QSAR models for pKa prediction using multiple machine learning approaches. Mansouri K; Cariello NF; Korotcov A; Tkachenko V; Grulke CM; Sprankle CS; Allen D; Casey WM; Kleinstreuer NC; Williams AJ J Cheminform; 2019 Sep; 11(1):60. PubMed ID: 33430972 [TBL] [Abstract][Full Text] [Related]
17. The rise of deep learning and transformations in bioactivity prediction power of molecular modeling tools. Bule M; Jalalimanesh N; Bayrami Z; Baeeri M; Abdollahi M Chem Biol Drug Des; 2021 Nov; 98(5):954-967. PubMed ID: 34532977 [TBL] [Abstract][Full Text] [Related]
18. Target prediction utilising negative bioactivity data covering large chemical space. Mervin LH; Afzal AM; Drakakis G; Lewis R; Engkvist O; Bender A J Cheminform; 2015; 7():51. PubMed ID: 26500705 [TBL] [Abstract][Full Text] [Related]
19. Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets. Zhou Y; Cahya S; Combs SA; Nicolaou CA; Wang J; Desai PV; Shen J J Chem Inf Model; 2019 Mar; 59(3):1005-1016. PubMed ID: 30586300 [TBL] [Abstract][Full Text] [Related]
20. Deep Neural Network Models for Predicting Chemically Induced Liver Toxicity Endpoints From Transcriptomic Responses. Wang H; Liu R; Schyman P; Wallqvist A Front Pharmacol; 2019; 10():42. PubMed ID: 30804783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]