These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29086306)

  • 21. Directed evolution and expression tuning of geraniol synthase for efficient geraniol production in Escherichia coli.
    Tashiro M; Fujii A; Kawai-Noma S; Saito K; Umeno D
    J Gen Appl Microbiol; 2017 Nov; 63(5):287-295. PubMed ID: 28954964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput FACS method for directed evolution of substrate specificity.
    Olsen MJ; Gam J; Iverson BL; Georgiou G
    Methods Mol Biol; 2003; 230():329-42. PubMed ID: 12824593
    [No Abstract]   [Full Text] [Related]  

  • 23. An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains.
    Fleetwood F; Andersson KG; Ståhl S; Löfblom J
    Microb Cell Fact; 2014 Dec; 13():179. PubMed ID: 25547008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis.
    Chen W; Zhang S; Jiang P; Yao J; He Y; Chen L; Gui X; Dong Z; Tang SY
    Metab Eng; 2015 Jul; 30():149-155. PubMed ID: 26051748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid evolution of acetic acid-detoxifying Escherichia coli under phosphate starvation conditions requires activation of the cryptic PhnE permease and induction of translesion synthesis DNA polymerases.
    Moreau PL
    FEMS Microbiol Lett; 2017 Feb; 364(4):. PubMed ID: 28199639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic incorporation of a 2-naphthol group into proteins for site-specific azo coupling.
    Chen S; Tsao ML
    Bioconjug Chem; 2013 Oct; 24(10):1645-9. PubMed ID: 24073629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole plasmid mutagenic PCR for directed protein evolution.
    Matsumura I; Rowe LA
    Biomol Eng; 2005 Jun; 22(1-3):73-9. PubMed ID: 15857786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
    Jennewein S; Schürmann M; Wolberg M; Hilker I; Luiten R; Wubbolts M; Mink D
    Biotechnol J; 2006 May; 1(5):537-48. PubMed ID: 16892289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein expression and refolding--a practical guide to getting the most out of inclusion bodies.
    Cabrita LD; Bottomley SP
    Biotechnol Annu Rev; 2004; 10():31-50. PubMed ID: 15504702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient site-directed saturation mutagenesis using degenerate oligonucleotides.
    Steffens DL; Williams JG
    J Biomol Tech; 2007 Jul; 18(3):147-9. PubMed ID: 17595310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast and Flexible Synthesis of Combinatorial Libraries for Directed Evolution.
    Sadler JC; Green L; Swainston N; Kell DB; Currin A
    Methods Enzymol; 2018; 608():59-79. PubMed ID: 30173773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies.
    Makino T; Skretas G; Kang TH; Georgiou G
    Metab Eng; 2011 Mar; 13(2):241-51. PubMed ID: 21130896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directed evolution of copy number of a broad host range plasmid for metabolic engineering.
    Tao L; Jackson RE; Cheng Q
    Metab Eng; 2005 Jan; 7(1):10-7. PubMed ID: 15721806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations.
    Zhao J; Kardashliev T; Joëlle Ruff A; Bocola M; Schwaneberg U
    Biotechnol Bioeng; 2014 Dec; 111(12):2380-9. PubMed ID: 24904008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of metabolic engineering anti-metabolite tolerance in Escherichia coli.
    Bonomo J; Warnecke T; Hume P; Marizcurrena A; Gill RT
    Metab Eng; 2006 May; 8(3):227-39. PubMed ID: 16497527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors that influence the extracellular expression of streptavidin in Escherichia coli using a bacteriocin release protein.
    Miksch G; Ryu S; Risse JM; Flaschel E
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):319-26. PubMed ID: 18795286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase.
    Rothman SC; Voorhies M; Kirsch JF
    Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifying thermostability of appA from Escherichia coli.
    Zhu W; Qiao D; Huang M; Yang G; Xu H; Cao Y
    Curr Microbiol; 2010 Oct; 61(4):267-73. PubMed ID: 20213104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Escherichia coli: construction and characterization of a gltA (citrate synthase) knockout mutant.
    Vandedrinck S; Deschamps G; Sablon E; Vandamme EJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):333-6. PubMed ID: 15954614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display.
    Deweid L; Neureiter L; Englert S; Schneider H; Deweid J; Yanakieva D; Sturm J; Bitsch S; Christmann A; Avrutina O; Fuchsbauer HL; Kolmar H
    Chemistry; 2018 Oct; 24(57):15195-15200. PubMed ID: 30047596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.