BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29086393)

  • 41. [A two-dimensional electrophoresis protocol suitable for proteomic study of rice leaves].
    Wang YQ; Peng XX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):252-6. PubMed ID: 16622327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation of Apoplastic Fluid from Woody Plant Leaves: Grapevine and Coffee as a Case Study.
    Figueiredo A; Guerra-Guimarães L
    Methods Mol Biol; 2021; 2259():49-57. PubMed ID: 33687708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of leaf peroxisomes from Arabidopsis for organelle proteome analyses.
    Reumann S; Singhal R
    Methods Mol Biol; 2014; 1072():541-52. PubMed ID: 24136545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequencing covalent modifications of membrane proteins.
    Whitelegge JP; Laganowsky A; Nishio J; Souda P; Zhang H; Cramer WA
    J Exp Bot; 2006; 57(7):1515-22. PubMed ID: 16574746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers.
    Lund R; Leth-Larsen R; Jensen ON; Ditzel HJ
    J Proteome Res; 2009 Jun; 8(6):3078-90. PubMed ID: 19341246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complementary methods to assist subcellular fractionation in organellar proteomics.
    Gauthier DJ; Lazure C
    Expert Rev Proteomics; 2008 Aug; 5(4):603-17. PubMed ID: 18761470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Techniques for preparation of bovine mammary smooth membranes.
    Pocius PA; Dreels JM; Devery-Pocius JE; Baumrucker CR
    J Dairy Sci; 1984 Sep; 67(9):2055-61. PubMed ID: 6149240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic analysis of the lymphocyte plasma membrane using cell surface biotinylation and solution-phase isoelectric focusing.
    Peirce MJ; Cope AP; Wait R
    Methods Mol Biol; 2009; 528():135-40. PubMed ID: 19153690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteomic analysis of membrane preparations from developing Pinus radiata compression wood.
    Mast S; Peng L; Jordan TW; Flint H; Phillips L; Donaldson L; Strabala TJ; Wagner A
    Tree Physiol; 2010 Nov; 30(11):1456-68. PubMed ID: 21030408
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organelle proteomics: reduction of sample complexity by enzymatic in-gel selection of native proteins.
    Reisinger V; Eichacker LA
    Methods Mol Biol; 2009; 564():325-33. PubMed ID: 19544031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment.
    Fagioni M; D'Amici GM; Timperio AM; Zolla L
    J Proteome Res; 2009 Jan; 8(1):310-26. PubMed ID: 19035790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis.
    Zhang L; Wang X; Peng X; Wei Y; Cao R; Liu Z; Xiong J; Ying X; Chen P; Liang S
    J Proteome Res; 2007 Jan; 6(1):34-43. PubMed ID: 17203946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant plasma membrane protein extraction and solubilization for proteomic analysis.
    Santoni V
    Methods Mol Biol; 2007; 355():93-109. PubMed ID: 17093306
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fractionation Techniques to Increase Plant Proteome Coverage: Combining Separation in Parallel at the Protein and the Peptide Level.
    Černý M; Berka M; Habánová H
    Methods Mol Biol; 2019; 1871():93-105. PubMed ID: 30276734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chloroplast differentiation in the growing leaves of Arabidopsis thaliana.
    Gügel IL; Soll J
    Protoplasma; 2017 Sep; 254(5):1857-1866. PubMed ID: 27943020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps.
    Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS
    J Proteome Res; 2008 Dec; 7(12):5187-210. PubMed ID: 18986194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells.
    daSilva LL; Snapp EL; Denecke J; Lippincott-Schwartz J; Hawes C; Brandizzi F
    Plant Cell; 2004 Jul; 16(7):1753-71. PubMed ID: 15208385
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively.
    Marmagne A; Vinauger-Douard M; Monachello D; de Longevialle AF; Charon C; Allot M; Rappaport F; Wollman FA; Barbier-Brygoo H; Ephritikhine G
    J Exp Bot; 2007; 58(12):3385-93. PubMed ID: 17872921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative analysis of plasma membrane proteome using two-dimensional difference gel electrophoresis.
    Tang W
    Methods Mol Biol; 2012; 876():67-82. PubMed ID: 22576086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The proteomics of plant cell membranes.
    Komatsu S; Konishi H; Hashimoto M
    J Exp Bot; 2007; 58(1):103-12. PubMed ID: 16804056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.