These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29086559)
1. Importance of Evaluating Dynamic Encapsulation Stability of Amphiphilic Assemblies in Serum. Liu B; Thayumanavan S Biomacromolecules; 2017 Dec; 18(12):4163-4170. PubMed ID: 29086559 [TBL] [Abstract][Full Text] [Related]
2. Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. Bickerton S; Jiwpanich S; Thayumanavan S Mol Pharm; 2012 Dec; 9(12):3569-78. PubMed ID: 23088589 [TBL] [Abstract][Full Text] [Related]
3. Simulating the co-encapsulation of drugs in a "smart" core-shell-shell polymer nanoparticle. Buxton GA Eur Phys J E Soft Matter; 2014 Mar; 37(3):14. PubMed ID: 24633518 [TBL] [Abstract][Full Text] [Related]
4. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Gu L; Faig A; Abdelhamid D; Uhrich K Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069 [TBL] [Abstract][Full Text] [Related]
5. Albumin-Encapsulated Liposomes: A Novel Drug Delivery Carrier With Hydrophobic Drugs Encapsulated in the Inner Aqueous Core. Okamoto Y; Taguchi K; Yamasaki K; Sakuragi M; Kuroda S; Otagiri M J Pharm Sci; 2018 Jan; 107(1):436-445. PubMed ID: 28826882 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Martin C; Aibani N; Callan JF; Callan B Ther Deliv; 2016; 7(1):15-31. PubMed ID: 26652620 [TBL] [Abstract][Full Text] [Related]
7. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules. Tomcin S; Kelsch A; Staff RH; Landfester K; Zentel R; Mailänder V Acta Biomater; 2016 Apr; 35():12-22. PubMed ID: 26772526 [TBL] [Abstract][Full Text] [Related]
9. Beyond hydrophilic polymers in amphiphilic polymer-based self-assembled NanoCarriers: Small hydrophilic carboxylate-capped disulfide drug delivery system and its multifunctionality and multispatial targetability. Choi YS; Cho H; Choi WG; Lee SS; Huh KM; Shim MS; Park IS; Cho YY; Lee JY; Lee HS; Kang HC Biomaterials; 2022 Jan; 280():121307. PubMed ID: 34894582 [TBL] [Abstract][Full Text] [Related]
10. Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Xu H; Yang P; Ma H; Yin W; Wu X; Wang H; Xu D; Zhang X Drug Deliv; 2016 Oct; 23(8):3063-3071. PubMed ID: 26926462 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs. Kundu A; Nandi S; Das P; Nandi AK ACS Appl Mater Interfaces; 2015 Feb; 7(6):3512-23. PubMed ID: 25612470 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired design of amphiphilic particles with tailored compartments for dual-drug controlled release. Qin J; Li Z; Song B J Mater Chem B; 2020 Feb; 8(8):1682-1691. PubMed ID: 32016233 [TBL] [Abstract][Full Text] [Related]
13. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug. Irwan AW; Berania JE; Liu X Pharm Dev Technol; 2016 Mar; 21(2):231-8. PubMed ID: 25496001 [TBL] [Abstract][Full Text] [Related]
14. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. Senthilkumar T; Zhou L; Gu Q; Liu L; Lv F; Wang S Angew Chem Int Ed Engl; 2018 Oct; 57(40):13114-13119. PubMed ID: 30110129 [TBL] [Abstract][Full Text] [Related]
15. Gold nanostar-polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells. Sardo C; Bassi B; Craparo EF; Scialabba C; Cabrini E; Dacarro G; D'Agostino A; Taglietti A; Giammona G; Pallavicini P; Cavallaro G Int J Pharm; 2017 Mar; 519(1-2):113-124. PubMed ID: 28093325 [TBL] [Abstract][Full Text] [Related]
16. A novel drug delivery system obtained from hydrophobic modified amphiphilic polymers by Maillard reaction. Feng N; Wu H; Xie Y; Wu Q Int J Biol Macromol; 2020 Aug; 157():146-150. PubMed ID: 32353493 [TBL] [Abstract][Full Text] [Related]
17. A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading. Villamizar-Sarmiento MG; Molina-Soto EF; Guerrero J; Shibue T; Nishide H; Moreno-Villoslada I; Oyarzun-Ampuero FA Mol Pharm; 2019 Jul; 16(7):2892-2901. PubMed ID: 31181908 [TBL] [Abstract][Full Text] [Related]
18. Recent Trends in Clinical Trials Related to Carrier-Based Drugs. Tagami T; Ozeki T J Pharm Sci; 2017 Sep; 106(9):2219-2226. PubMed ID: 28259767 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. Gjuroski I; Girousi E; Meyer C; Hertig D; Stojkov D; Fux M; Schnidrig N; Bucher J; Pfister S; Sauser L; Simon HU; Vermathen P; Furrer J; Vermathen M J Control Release; 2019 Dec; 316():150-167. PubMed ID: 31689463 [TBL] [Abstract][Full Text] [Related]
20. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Kabanov AV; Vinogradov SV Angew Chem Int Ed Engl; 2009; 48(30):5418-29. PubMed ID: 19562807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]