These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29086818)

  • 1. Interactions between magnetite and humic substances: redox reactions and dissolution processes.
    Sundman A; Byrne JM; Bauer I; Menguy N; Kappler A
    Geochem Trans; 2017 Oct; 18(1):6. PubMed ID: 29086818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox reaction between solid-phase humins and Fe(III) compounds: Toward a further understanding of the redox properties of humin and its possible environmental effects.
    Xiao Z; Yang L; Chen C; Chen D; Zhou X
    J Environ Manage; 2022 May; 310():114793. PubMed ID: 35220098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling.
    Jiang J; Kappler A
    Environ Sci Technol; 2008 May; 42(10):3563-9. PubMed ID: 18546690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.
    Piepenbrock A; Schröder C; Kappler A
    Environ Sci Technol; 2014; 48(3):1656-64. PubMed ID: 24400782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances.
    Bauer I; Kappler A
    Environ Sci Technol; 2009 Jul; 43(13):4902-8. PubMed ID: 19673283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Fe-metabolizing bacteria and humic substances on magnetite nanoparticle reactivity towards arsenic and chromium.
    Sundman A; Vitzthum AL; Adaktylos-Surber K; Figueroa AI; van der Laan G; Daus B; Kappler A; Byrne JM
    J Hazard Mater; 2020 Feb; 384():121450. PubMed ID: 31759758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation.
    Han X; Tomaszewski EJ; Sorwat J; Pan Y; Kappler A; Byrne JM
    Environ Sci Technol; 2020 Apr; 54(7):4121-4130. PubMed ID: 32129607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of organic ligands on the stoichiometry of magnetite nanoparticles.
    Jungcharoen P; Marsac R; Choueikani F; Masson D; Pédrot M
    Nanoscale Adv; 2023 Aug; 5(16):4213-4223. PubMed ID: 37560422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review.
    Lee S; Roh Y; Koh DC
    Chemosphere; 2019 Apr; 220():86-97. PubMed ID: 30579952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.
    Dippon U; Pantke C; Porsch K; Larese-Casanova P; Kappler A
    Environ Sci Technol; 2012 Jun; 46(12):6556-65. PubMed ID: 22642801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants.
    Cheng W; Marsac R; Hanna K
    Environ Sci Technol; 2018 Jan; 52(2):467-473. PubMed ID: 29215874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles.
    Byrne JM; van der Laan G; Figueroa AI; Qafoku O; Wang C; Pearce CI; Jackson M; Feinberg J; Rosso KM; Kappler A
    Sci Rep; 2016 Aug; 6():30969. PubMed ID: 27492680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction.
    Yang Z; Sun T; Subdiaga E; Obst M; Haderlein SB; Maisch M; Kretzschmar R; Angenent LT; Kappler A
    Sci Total Environ; 2020 Feb; 703():135515. PubMed ID: 31761354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of persulfate by humic substances: Stoichiometry and changes in the optical properties of the humic substances.
    Kim C; Chin YP; Son H; Hwang I
    Water Res; 2022 Apr; 212():118107. PubMed ID: 35085845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight to Microbial Fe(III) Reduction Mediated by Redox-Active Humic Acids with Varied Redox Potentials.
    Duan J; Xu Z; Yang Z; Jiang J
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34202887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and Speciation of Hydrated Magnetite {111} Surfaces from Ab Initio Simulations with Relevance for Geochemical Redox Processes.
    Katheras AS; Karalis K; Krack M; Scheinost AC; Churakov SV
    Environ Sci Technol; 2024 Jan; 58(1):935-946. PubMed ID: 38133817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.
    Lee YP; Fujii M; Kikuchi T; Terao K; Yoshimura C
    PLoS One; 2017; 12(4):e0176484. PubMed ID: 28453538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.